Werner Heisenberg

Quantum Mechanics

However, while everyone was working on refining the new quantum mechanics, Erwin Schrödinger proposed an alternative method. With his famous wave equation, he approached quantum mechanics from a very different course. He was interested in how matter behaved like waves, as light had been shown to do, and in doing so he completely discarded much of the work that had recently been done in quantum physics. The scientific world was shocked, moreover, when it was proved that Schrödinger's equation yielded equivalent results to matrix mechanics. While the two alternative theories may have been mathematically equivalent, they presented completely different pictures of reality.

The debate was not always cordial. Schrödinger insisted that his portrayal was more easily visualized and declared matrix mechanics superseded, while Heisenberg and his colleagues believed Schrödinger's account to be misleading and insufficient. There is no doubt that many physicists, while appreciating the mathematical advances that Schrödinger's equation entailed, took offense to the abandonment of the achievements on which they had spent so much time and effort. Schrödinger's wave theory was based on a continuous field, while the idea of quantum jumps fleshed out by Bohr, Heisenberg, and many others put forth a discontinuous picture.

The debate continued on with no resolution, and it became clear that a new discovery would have to be advanced. This new discovery came in the form of Heisenberg's uncertainty principle.