The Endoplasmic Reticulum

The endoplasmic reticulum, or ER, is a very important cellular structure because of its function in protein synthesis and lipid synthesis. For example, the ER is the site of production of all transmembrane proteins. Since nearly all proteins that are secreted from a cell pass through it, the ER is also important in cellular trafficking. In addition to these major roles, the ER plays a role in a number of other biological processes. There are two different types of ER: smooth ER and rough ER (RER).

The rough ER has its name because it is coated with ribosomes, the structures most directly responsible for carrying out protein synthesis. Smooth ER lacks these ribosomes and is more abundant in cells that are specific for lipid synthesis and metabolism.

Figure %: The Endoplasmic Reticulum

In addtion to protein and lipid synthesis, the ER also conducts post-synthesis modifications. One such modification involves the addition of carbohydrate chains to the proteins, though the function of this addition is unknown. Another major modification is called protein folding, whose name is rather self- explanatory. Another role of the ER is to capture calcium for the cell from the cytosol. Finally, the ER can secrete proteins into the cell that are usually destined for the golgi apparatus.

Figure %: The location of the Endoplasmi Reticulum, golgi apparatus, and lysosome in a eukaryotic cell.

The Golgi Apparatus

The golgi apparatus is usually located near the cell nucleus. It is composed of a series of layers called golgi stacks. Proteins from the ER always enter and exit the golgi apparatus from the same location. The cis face of the golgi is where proteins enter. A protein will make its way through the golgi stacks to the other end called the trans face where it is secreted to other parts of the cell.

Figure %: Structure of the Golgi Apparatus

In the golgi apparatus, more carbohydrate chains are added to the protein while other chains are removed. The golgi stacks also sort proteins for secretion. After sorting, the membrane of the golgi buds off, forming secretory vesicles that transport proteins to their specific destination in the cell. A protein's destination is often signaled with a specific amino acid sequence at its end. A protein secretion most often travels back to the ER, to the plasma membrane where it can become a transmembrane protein, or to the next structure we will discuss, the lysosomes.

Lysosomes

Lysosomes are sites of molecular degradation found in all eukaryotic cells. They are small, single-membrane packages of acidic enzymes that digest molecules and are found throughout eukaryotic cells. As such, Lysosomes are a sort of cellular "garbage can," getting rid of cellular debris. Proteins that are not correctly folded or have significant mutations can be secreted to the lysosomes and be degraded instead of taking up space in the cell. Detritus proteins and other molecules can find their way to the lysosome in a variey of ways.