Search Menu

Through epigenetic inheritance, some of the experiences of the parents may pass to future generations. At the same time, the epigenome remains flexible as environmental conditions continue to change. Epigenetic inheritance may allow an organism to continually adjust its gene expression to fit its environment - without changing its DNA code.

http://learn.genetics.utah.edu/content/epigenetics/inheritance/

We used to think that a new embryo's epigenome was completely erased and rebuilt from scratch. But this isn't completely true. Some epigenetic tags remain in place as genetic information passes from generation to generation, a process called epigenetic inheritance.

Epigenetic inheritance is an unconventional finding. It goes against the idea that inheritance happens only through the DNA code that passes from parent to offspring. It means that a parent's experiences, in the form of epigenetic tags, can be passed down to future generations.

As unconventional as it may be, there is little doubt that epigenetic inheritance is real. In fact, it explains some strange patterns of inheritance geneticists have been puzzling over for decades.

Most complex organisms develop from specialized reproductive cells (eggs and sperm in animals). Two reproductive cells meet, then they grow and divide to form every type of cell in the adult organism. In order for this process to occur, the epigenome must be erased through a process called "reprogramming."

Reprogramming is important because eggs and sperm develop from specialized cells with stable gene expression profiles. In other words, their genetic information is marked with epigenetic tags. Before the new organism can grow into a healthy embryo, the epigenetic tags must be erased.

At certain times during development (the timing varies among species), specialized cellular machinery scours the genome and erases its epigenetic tags in order to return the cells to a genetic "blank slate." Yet, for a small minority of genes, epigenetic tags make it through this process and pass unchanged from parent to offspring.

Implications for Evolution

Epigenetic inheritance adds another dimension to the modern picture of evolution. The genome changes slowly, through the processes of random mutation and natural selection. It takes many generations for a genetic trait to become common in a population. The epigenome, on the other hand, can change rapidly in response to signals from the environment. And epigenetic changes can happen in many individuals at once. Through epigenetic inheritance, some of the experiences of the parents may pass to future generations. At the same time, the epigenome remains flexible as environmental conditions continue to change. Epigenetic inheritance may allow an organism to continually adjust its gene expression to fit its environment - without changing its DNA code.

Through epigenetic inheritance, some of the experiences of the parents may pass to future generations. At the same time, the epigenome remains flexible as environmental conditions continue to change. Epigenetic inheritance may allow an organism to continually adjust its gene expression to fit its environment - without changing its DNA code.

Comment 

Was this note helpful to you?

Thumbs Up Thumbs Down
  • Share