


Inequalities
Before you get too comfortable with expressions
and equations, we should introduce inequalities. An inequality is
like an equation, but instead of relating equal quantities, it specifies
exactly how two quantities are not equal. There
are four types of inequalities:
 x > y: “x is greater than y.”
 x < y: “x is less than y.”
 x ≥ y: “x is greater than or equal to y.”
 x ≤ y: _{} “x is less than or equal to y.”
Solving inequalities is exactly like solving equations
except for one very important difference: when both sides of an
inequality are multiplied or divided by a negative number, the direction
of the inequality switches.
Here are a few examples:


Notice that in the last example, the inequality had to
be reversed. Another way to express the solution is x ≥
–2. To help remember that multiplication or division by a negative
number reverses the direction of the inequality, remember that if x
> y, then –x < –y,
just as 5 > 4 and –5 < –4. Intuitively, this idea makes sense,
and it might help you remember this special rule of inequalities.
Absolute Value and Inequalities
When absolute values are included in inequalities, the
solutions come in two varieties.
 If the absolute value is less than a given quantity, then the solution is a single range, with a lower and an upper bound. For example,

 First, solve for the upper bound:
 Second, solve for the lower bound:
 Now, combine the two bounds into a range of values for x. –1 ≤ x ≤ 5 is the solution.
 The other solution for an absolute value inequality involves two disjoint ranges: one whose lower bound is negative infinity and whose upper bound is a real number, and one whose lower bound is a real number and whose upper bound is infinity. This occurs when the absolute value is greater than a given quantity. For example,

 First, solve for the upper range:
 Then, solve for the lower range:
 Now combine the two ranges to form the solution, which is two disjoint ranges: –∞ < x < –^{20}⁄_{3} or 4 < x < ∞.
When working with absolute values, it is important to
first isolate the expression within absolute value brackets. Then,
and only then, should you solve separately for the cases in which
the quantity is positive and negative.
Ranges
Inequalities are also used to express the range of values
that a variable can take. a < x < b means
that the value of x is greater than a and
less than b. Consider the following wordproblem
example:

Let a be the age of people for which
the board game is appropriate. The lower bound of a is 40,
and the upper bound is 65. The range of a does
not include its lower bound (it is appropriate for people “older
than 40”), but it does include its upper bound (“no older than 65”, i.e.,
65 is appropriate, but 66 is not). Therefore, the range of the age
of people for which the board game is appropriate can be expressed
by the inequality:
Here is another example:

The boundary weights of this car part are .98 21.5 = 21.07 and 1.02 21.5 = 21.93 grams. The
problem states that the piece cannot weigh less than
the minimum weight or more than the maximum weight
in order for it to work. This means that the part will function
at boundary weights themselves, and the lower and upper bounds are
included. The answer to the problem is 21.07 ≤ x ≤
21.93, where x is the weight of the part in grams.
Finding the range of a particular variable is
essentially an exercise in close reading. Every time you come across
a question involving ranges, you should carefully peruse the problem
to pick out whether a particular variable’s range includes its bounds
or not. This inclusion is the difference between “less than or equal
to” and simply “less than.”
Operations on Ranges
Operations like addition, subtraction, and multiplication
can be performed on ranges just like they can be performed on variables.
For example:

To solve this problem, simply manipulate the range like
an inequality until you have a solution. Begin with the original
range:
Then multiply the inequality by 2:
Add 3 to the inequality, and you have the answer:
There is one crucial rule you need to know about multiplying
ranges: if you multiply a range by a negative number, you must flip
the greaterthan or lessthan signs. For instance, if you multiply
the range 2 < x < 8 by –1, the new range
will be –2 > x > –8. Math IC questions that ask
you to perform operations on ranges of one variable will often test
your alertness by making you multiply the range by a negative number.
Some range problems on the Math IC will be made
slightly more difficult by the inclusion of more than one variable.
In general, the same basic procedures for dealing with onevariable ranges
applies to adding, subtracting, and multiplying twovariable ranges.
Addition with Ranges of Two or More Variables

Simply add the ranges. The lower bound is –2 + 0 = –2.
The upper bound is 8 + 5 = 13. Therefore, –2 < x + y <
13.
Subtraction with Ranges of Two or More Variables

In this case, you have to find the range of –t.
By multiplying the range of t by –1 and reversing the
direction of the inequalities, we find that 1 < –t <
3. Now we can simply add the ranges again to find the range of s
– t. 4 + 1 = 5, and 7 + 3 = 10. Therefore, 5
< s – t < 10.
In general, to subtract ranges, find the range of the opposite of
the variable being subtracted, and then add the ranges as usual.
Multiplication with Ranges of Two or More Variables

First, multiply the lower bound of one variable by the
lower and upper bounds of the other variable:
Then, multiply the upper bound of one variable
with both bounds of the other variable:
The least of these four products becomes the lower bound,
and the greatest is the upper bound. Therefore, –12 < jk <
48.
Let’s try one more example of performing operations on
ranges:

The first step is to find the range of x + y.
Notice that the range of y is written backward, with
the upper bound to the left of the variable. Rewrite it first:
Next add the ranges to find the range of x + y:
We have our bounds for the range of x + y,
but are they included in the range? In other words, is the range
0 < x + y < 11, 0 ≤ x + y ≤
11, or some combination of these two?
The rule to answer this question is the following: if
either of the bounds that are being added, subtracted, or multiplied
is noninclusive (< or >), then the resulting bound is noninclusive.
Only when both bounds being added, subtracted, or multiplied are
inclusive (≤ or ≥) is the resulting bound also inclusive.
The range of x includes its lower bound,
3, but not its upper bound, 7. The range of y includes
both its bounds. Therefore, the range of x + y is
0 ≤ x + y < 11, and the range of 2(x +
y) is 0 ≤ 2(x + y) < 22.
