Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews October 6, 2023 September 29, 2023
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
There are many ways to categorize a recursive function. Listed below are some of the most common.
A linear recursive function is a function that only makes a single call to itself each time the function runs (as opposed to one that would call itself multiple times during its execution). The factorial function is a good example of linear recursion.
Another example of a linear recursive function would be one to compute the square root of a number using Newton's method (assume EPSILON to be a very small number close to 0):
Tail recursion is a form of linear recursion. In tail recursion, the recursive call is the last thing the function does. Often, the value of the recursive call is returned. As such, tail recursive functions can often be easily implemented in an iterative manner; by taking out the recursive call and replacing it with a loop, the same effect can generally be achieved. In fact, a good compiler can recognize tail recursion and convert it to iteration in order to optimize the performance of the code.
A good example of a tail recursive function is a function to compute the GCD, or Greatest Common Denominator, of two numbers:
Some recursive functions don't just have one call to themself, they have two (or more). Functions with two recursive calls are referred to as binary recursive functions.
The mathematical combinations operation is a good example of a function that can quickly be implemented as a binary recursive function. The number of combinations, often represented as nCk where we are choosing n elements out of a set of k elements, can be implemented as follows:
An exponential recursive function is one that, if you were to draw out a representation of all the function calls, would have an exponential number of calls in relation to the size of the data set (exponential meaning if there were n elements, there would be O(an) function calls where a is a positive number).
A good example an exponentially recursive function is a function to compute all the permutations of a data set. Let's write a function to take an array of n integers and print out every permutation of it.
To run this function on an array arr of length n, we'd do print_permutations(arr, n, 0) where the 0 tells it to start at the beginning of the array.
In nested recursion, one of the arguments to the recursive function is the recursive function itself! These functions tend to grow extremely fast. A good example is the classic mathematical function, "Ackerman's function. It grows very quickly (even for small values of x and y, Ackermann(x,y) is extremely large) and it cannot be computed with only definite iteration (a completely defined for() loop for example); it requires indefinite iteration (recursion, for example).
Try computing ackerman(4,2) by hand... have fun!
A recursive function doesn't necessarily need to call itself. Some recursive functions work in pairs or even larger groups. For example, function A calls function B which calls function C which in turn calls function A.
A simple example of mutual recursion is a set of function to determine whether an integer is even or odd. How do we know if a number is even? Well, we know 0 is even. And we also know that if a number n is even, then n - 1 must be odd. How do we know if a number is odd? It's not even!
I told you recursion was powerful! Of course, this is just an illustration. The above situation isn't the best example of when we'd want to use recursion instead of iteration or a closed form solution. A more efficient set of function to determine whether an integer is even or odd would be the following:
Please wait while we process your payment