No Fear Translations of Shakespeare’s plays (along with audio!) and other classic works
Flashcards
Mastery Quizzes
Infographics
Graphic Novels
AP® Test Prep PLUS
AP® Practice & Lessons
My PLUS Activity
Note-taking
Bookmarking
Dashboard
Annual
$22.49/month + tax
Save
25%
on 2-49 accounts
Annual
$20.99/month + tax
Save
30%
on 50-99 accounts
Focused-studying
Ad-free experience
Study Guides for 1,000+ titles
Full Text content for 250+ titles
PLUS Study Tools
No Fear Translations of Shakespeare’s plays (along with audio!) and other classic works
Flashcards
Mastery Quizzes
Infographics
Graphic Novels
AP® Test Prep PLUS
AP® Practice & Lessons
My PLUS Activity
Note-taking
Bookmarking
Dashboard
Testimonials from SparkNotes
Customers
No Fear
provides access to Shakespeare for students who normally couldn’t (or wouldn’t) read his plays.
It’s also a very useful tool when trying to explain Shakespeare’s wordplay!
Erika M.
I
tutor high school students in a variety of subjects. Having access to the literature
translations helps me to stay informed about the various assignments. Your summaries and
translations are invaluable.
Kathy B.
Teaching Shakespeare to today's generation can be challenging. No Fear helps a ton with
understanding the crux of the text.
Kay
H.
Testimonials from SparkNotes Customers
No Fear provides access to Shakespeare for students who normally couldn’t (or wouldn’t) read his plays. It’s also a very useful tool when trying to explain Shakespeare’s wordplay!
Erika M.
I tutor high school students in a variety of subjects. Having access to the literature translations helps me to stay informed about the various assignments. Your summaries and translations are invaluable.
Kathy B.
Teaching Shakespeare to today's generation can be challenging. No Fear helps a ton with understanding the crux of the text.
Kay H.
Create Account
Select Plan
3
Payment Info
4
Start 7-Day Free Trial!
Payment Information
You will only be charged after the completion of the 7-day free trial.
If you cancel your account before the free trial is over, you will not be charged.
You will only be charged after the completion of the 7-day free trial. If you cancel your account before the free trial is over, you will not be charged.
Order Summary
Annual
7-day Free Trial
SparkNotes PLUS
$29.99 / year
Annual
Quantity
51
PLUS Group Discount
$29.99 $29.99 / seat
Tax
$0.00
SPARK25
-$1.25
25% Off
Total billed on Nov 7, 2024 after 7-day free trail
$29.99
Total billed
$0.00
Due Today
$0.00
Promo code
This is not a valid promo code
Card Details
By placing your order you agree to our terms of service and privacy policy.
By saving your payment information you allow SparkNotes to charge you for future payments in accordance with their terms.
Powered by stripe
Legal
Google pay.......
Welcome to
Thank You!
Your group members can use the joining link below to redeem their membership. They will be prompted to log into an existing account or to create a new account.
All members under 16 will be required to obtain a parent's consent sent via link in an email.
Your Child’s Free Trial Starts Now!
Thank you for completing the sign-up process. Your child’s SparkNotes PLUS login credentials are [email] and the associated password.
If you have any questions, please visit our help center.
Your Free Trial Starts Now!
Please wait while we process your payment
Parent’s Email is Required
A parent must help manage your account. Enter their email below and we’ll send them a link to finish signing
up for SparkNotes PLUS.
We’ve sent an email to parentsname@email.com. In
order to access SparkNotes PLUS, your parent must click the link provided in the email.
We’ve sent an email to parentsname@email.com. In order to access
SparkNotes PLUS, your parent must follow the link provided in the email to complete the sign-up process.
In animal conflicts, such as territory or food source defense, the success of
one animal's chosen strategy depends on the strategies of the other individuals
involved. Because of this, animal conflicts can be modeled after simple
games, such as "Rock, Paper, Scissors," in which the outcome of the game
depends on which strategies
each player chooses. The benefit or detriment to each player is measured
quantitatively, usually as the number of
offspring (fitness), or net energy gain in calories.
Evolutionarily Stable Strategies
In a two player game where both players have a choice of two strategies, we can
calculate which is the best strategy, or the optimal frequency with which two
play both strategies. In the four variations of
the game pictured below, we have player 1 and player 2, each choosing between
strategies A and B.
Figure %: Evolutionarily Stable Strategies (ESS)
By convention, the payoffs are shown for the player on the left side of the
matrix. If both players choose strategy A, the payoff is Q. If both players
choose strategy B, the payoff is T. If player 1 chooses strategy A and his
opponent chooses strategy B, player 1's payoff is R. If player 1 chooses
strategy B and his opponent chooses strategy A, player 1's payoff is S. Notice
that in this last circumstance, player 2's payoff would be R, not S. Also
note that though the name's for the payoffs remain the same, the value of those
payoffs differe across the four variations.
In the situation described on the left side of , payoff Q
is better than payoff S, and payoff R is better than payoff T. In this case,
player 1 should always choose strategy A, because no matter which strategy his
opponent chooses, strategy A will provide a better payoff. This situation is a
pure evolutionarily stable strategy (ESS). All players will choose strategy
A, and evolution will select for only those players who do choose strategy A.
In the situation described by the right side of the figure, because S>Q and T>R,
player 1 should always choose strategy B for the same reasons listed
above. This is also a pure ESS.
In part c, the situation becomes a bit more difficult. Since Q>S and T>R, there
is no clear strategy that will always be best. Player 1's success will depend
on which strategy his opponent chooses. This is known as an unstable mixed ESS.
The best strategy for player 1 is to always do what his opponent does. If both
players choose strategy A, player 1 gets the better payoff of Q. If
they both choose strategy B, player 1 receives the better payoff of T.
Evolution will result in the frequency of played strategies moving toward what
the majority of the population was already doing.
In part d, where S>Q and R>T, the best strategy for player 1 is to always do the
opposite of what the
opponent does. This is a stable mixed ESS. It is this last situation in which
we are most interested, because
the other three will always eventually result in one strategy being played
constantly. A stable mixed ESS is
the only situation in which two strategies can be maintained. The two
strategies in a game can be played by different individuals who always play the
same strategy (a polymorphic population), or both strategies may be played by
any individual in a population (polymorphic individuals).