# Polynomials

### Introduction and Summary

This chapter explores polynomials, expressions which are the sum or difference of several individual monomial terms.

The first section explains how to classify polynomials. Polynomials are classified according to number of terms and degree.

The second section explores addition and subtraction of polynomials. To add and subtract polynomials, it is necessary to combine like terms.

In addition to adding and subtracting polynomials, we can also multiply polynomials. This is the topic of section three. The section begins with two specific cases -- multiplication of a polynomial by a monomial and multiplication of two binomials -- and ends with a general schema for multiplying any two polynomials.

The next section explores two special cases of binomial multiplication. The first case is multiplying a binomial by itself, or squaring the binomial. The result is a perfect square trinomial. The second case is multiplying of a sum of two terms by the difference of the same two terms. The result is a difference of squares.

The final two sections deal with factoring. Section five explains how to factor out a monomial, and section six explains how to factor trinomials of the form x 2 + bx + c into two binomials (x + d )(x + e) .

Polynomials equations are quite common in algebra and much of higher mathematics. Thus, it is important to know how to perform basic operations with them.

## Take a Study Break

### Star Trek gets SEXY

Chris Pine and Zoe Saldana heat up the red carpet!

### Are you afraid of relationships?

Auntie SparkNotes can help!

### Sexy starlet style

See every single look from the Met Gala!

### Geeky Actors: Then and Now

Travel back in time!

### Villains We Want These Actresses to Play

From super cute to super bad!

### 10 Movies Better Than Their Books

What do you think?

### How To Look Like J-Law...

When you don't look like J-Law.

### 12 Scientific Inaccuracies in Into Darkness

What did Star Trek get wrong?

## The Book

### Read What You Love, Anywhere You Like

Get Our FREE NOOK Reading Apps