No Fear Translations of Shakespeare’s plays (along with audio!) and other classic works
Flashcards
Mastery Quizzes
Infographics
Graphic Novels
AP® Test Prep PLUS
AP® Practice & Lessons
My PLUS Activity
Note-taking
Bookmarking
Dashboard
Annual
$22.49/month + tax
Save
25%
on 2-49 accounts
Annual
$20.99/month + tax
Save
30%
on 50-99 accounts
Focused-studying
Ad-free experience
Study Guides for 1,000+ titles
Full Text content for 250+ titles
PLUS Study Tools
No Fear Translations of Shakespeare’s plays (along with audio!) and other classic works
Flashcards
Mastery Quizzes
Infographics
Graphic Novels
AP® Test Prep PLUS
AP® Practice & Lessons
My PLUS Activity
Note-taking
Bookmarking
Dashboard
Testimonials from SparkNotes
Customers
No Fear
provides access to Shakespeare for students who normally couldn’t (or wouldn’t) read his plays.
It’s also a very useful tool when trying to explain Shakespeare’s wordplay!
Erika M.
I
tutor high school students in a variety of subjects. Having access to the literature
translations helps me to stay informed about the various assignments. Your summaries and
translations are invaluable.
Kathy B.
Teaching Shakespeare to today's generation can be challenging. No Fear helps a ton with
understanding the crux of the text.
Kay
H.
Testimonials from SparkNotes Customers
No Fear provides access to Shakespeare for students who normally couldn’t (or wouldn’t) read his plays. It’s also a very useful tool when trying to explain Shakespeare’s wordplay!
Erika M.
I tutor high school students in a variety of subjects. Having access to the literature translations helps me to stay informed about the various assignments. Your summaries and translations are invaluable.
Kathy B.
Teaching Shakespeare to today's generation can be challenging. No Fear helps a ton with understanding the crux of the text.
Kay H.
Create Account
Select Plan
3
Payment Info
4
Start 7-Day Free Trial!
Payment Information
You will only be charged after the completion of the 7-day free trial.
If you cancel your account before the free trial is over, you will not be charged.
You will only be charged after the completion of the 7-day free trial. If you cancel your account before the free trial is over, you will not be charged.
Order Summary
Annual
7-day Free Trial
SparkNotes PLUS
$29.99 / year
Annual
Quantity
51
PLUS Group Discount
$29.99 $29.99 / seat
Tax
$0.00
SPARK25
-$1.25
25% Off
Total billed on Nov 7, 2024 after 7-day free trail
$29.99
Total billed
$0.00
Due Today
$0.00
Promo code
This is not a valid promo code
Card Details
By placing your order you agree to our terms of service and privacy policy.
By saving your payment information you allow SparkNotes to charge you for future payments in accordance with their terms.
Powered by stripe
Legal
Google pay.......
Welcome to
Thank You!
Your group members can use the joining link below to redeem their membership. They will be prompted to log into an existing account or to create a new account.
All members under 16 will be required to obtain a parent's consent sent via link in an email.
Your Child’s Free Trial Starts Now!
Thank you for completing the sign-up process. Your child’s SparkNotes PLUS login credentials are [email] and the associated password.
If you have any questions, please visit our help center.
Your Free Trial Starts Now!
Please wait while we process your payment
Parent’s Email is Required
A parent must help manage your account. Enter their email below and we’ll send them a link to finish signing
up for SparkNotes PLUS.
We’ve sent an email to parentsname@email.com. In
order to access SparkNotes PLUS, your parent must click the link provided in the email.
We’ve sent an email to parentsname@email.com. In order to access
SparkNotes PLUS, your parent must follow the link provided in the email to complete the sign-up process.
Consider the right triangle pictured below:
Figure %: A right triangle with vertex A at the origin and angle A in standard
position
Using the lengths of the sides of right triangles such as the one above, the
trigonometric functions can be defined in the following way:
trigfuncdefined
sin(A) = =
cos(A) = =
tan(A) = =
csc(A) = =
sec(A) = =
cot(A) = =
In order to solve a right triangle, you must first figure out which angle is the
right angle. Knowing the right angle will also tell you which side is the
hypotenuse, since the hypotenuse will always stand opposite the right angle.
In this text, for the sake of consistency, in all triangles we will designate
angle C as the right angle, and side c and the hypotenuse. To finish solving
a right triangle, you then must either know the lengths of two sides, or the
length of one side and the measure of one acute angle. Given either of these
two situations, a triangle can be solved. Any further information about a
triangle may be helpful, but it is not necessary.
There are four basic techniques to use in solving triangles.
Using the Pythagorean Theorem, once two
sides are known, the third side can be calculated.
Using the fact that the acute angles of a right triangle are complementary,
once one acute angle is known, the other can be calculated.
Using the definitions of the trigonometric functions, any two parts of a
triangle can be related in an equation to equal a third part.
Using the definitions of the inverse trigonometric
functions, any two sides of a
triangle can be related in an equation to equal the inverse function of an
unknown acute angle.
The last two techniques are the most difficult to understand. Some examples
will help clear them up.
Using technique #3, given a = 4 and B = 22o, c = a sec(B) = . In this example, we will use trigonometric function
definitions to calculate an unknown part, side c. A calculator (or a very good
memory) is necessary to evaluate certain function values, like sec(B) and
cos(B) in this example. In this way trigonometric functions can be used to
calculate unknown parts of triangles.
Using technique #4, given a = 3 and b = 4, = arctan(A) = arccot(B). Here the inverse functions Arctangent and Arccotangent are used to
calculate the measures of either unknown acute angle in a particular triangle.
Again, a calculator is necessary to do the final calculation. There are
numerous ways to relate any two parts of a triangle in a trigonometric equation
to find a third unknown part.