No Fear Translations of Shakespeare’s plays (along with audio!) and other classic works
Flashcards
Mastery Quizzes
Infographics
Graphic Novels
AP® Test Prep PLUS
AP® Practice & Lessons
My PLUS Activity
Note-taking
Bookmarking
Dashboard
Annual
$22.49/month + tax
Save
25%
on 2-49 accounts
Annual
$20.99/month + tax
Save
30%
on 50-99 accounts
Focused-studying
Ad-free experience
Study Guides for 1,000+ titles
Full Text content for 250+ titles
PLUS Study Tools
No Fear Translations of Shakespeare’s plays (along with audio!) and other classic works
Flashcards
Mastery Quizzes
Infographics
Graphic Novels
AP® Test Prep PLUS
AP® Practice & Lessons
My PLUS Activity
Note-taking
Bookmarking
Dashboard
Testimonials from SparkNotes
Customers
No Fear
provides access to Shakespeare for students who normally couldn’t (or wouldn’t) read his plays.
It’s also a very useful tool when trying to explain Shakespeare’s wordplay!
Erika M.
I
tutor high school students in a variety of subjects. Having access to the literature
translations helps me to stay informed about the various assignments. Your summaries and
translations are invaluable.
Kathy B.
Teaching Shakespeare to today's generation can be challenging. No Fear helps a ton with
understanding the crux of the text.
Kay
H.
Testimonials from SparkNotes Customers
No Fear provides access to Shakespeare for students who normally couldn’t (or wouldn’t) read his plays. It’s also a very useful tool when trying to explain Shakespeare’s wordplay!
Erika M.
I tutor high school students in a variety of subjects. Having access to the literature translations helps me to stay informed about the various assignments. Your summaries and translations are invaluable.
Kathy B.
Teaching Shakespeare to today's generation can be challenging. No Fear helps a ton with understanding the crux of the text.
Kay H.
Create Account
Select Plan
3
Payment Info
4
Start 7-Day Free Trial!
Payment Information
You will only be charged after the completion of the 7-day free trial.
If you cancel your account before the free trial is over, you will not be charged.
You will only be charged after the completion of the 7-day free trial. If you cancel your account before the free trial is over, you will not be charged.
Order Summary
Annual
7-day Free Trial
SparkNotes PLUS
$29.99 / year
Annual
Quantity
51
PLUS Group Discount
$29.99 $29.99 / seat
Tax
$0.00
SPARK25
-$1.25
25% Off
Total billed on Nov 7, 2024 after 7-day free trail
$29.99
Total billed
$0.00
Due Today
$0.00
Promo code
This is not a valid promo code
Card Details
By placing your order you agree to our terms of service and privacy policy.
By saving your payment information you allow SparkNotes to charge you for future payments in accordance with their terms.
Powered by stripe
Legal
Google pay.......
Welcome to
Thank You!
Your group members can use the joining link below to redeem their membership. They will be prompted to log into an existing account or to create a new account.
All members under 16 will be required to obtain a parent's consent sent via link in an email.
Your Child’s Free Trial Starts Now!
Thank you for completing the sign-up process. Your child’s SparkNotes PLUS login credentials are [email] and the associated password.
If you have any questions, please visit our help center.
Your Free Trial Starts Now!
Please wait while we process your payment
Parent’s Email is Required
A parent must help manage your account. Enter their email below and we’ll send them a link to finish signing
up for SparkNotes PLUS.
We’ve sent an email to parentsname@email.com. In
order to access SparkNotes PLUS, your parent must click the link provided in the email.
We’ve sent an email to parentsname@email.com. In order to access
SparkNotes PLUS, your parent must follow the link provided in the email to complete the sign-up process.
Consider the vectors u = (3, 4) and v = (4, 1) in the plane. From the
component method of vector
addition we know that the
sum of these two vectors is u + v = (7, 5). Graphically, we see that this is the
same as the result we would get by "picking up" one of the vectors (without
changing either its direction or its magnitude), placing its end at the
other (unmoved) vector's tip, and drawing an arrow from the origin to the new
tip location for the displaced vector.
Figure %: The sum of the vectors u = (3, 4) and v = (4, 1) in the plane.
This geometric procedure for adding vectors works in general. For any two
vectors u and v in the plane, the sum of the vectors is graphically given as
in the following figure:
Figure %: The sum of the vectors u and v in the plane.
The geometric procedure is valid for 3-dimensional vectors as well.
Notice that in the same way that any two lines lie in a plane, any two
vectors in 3-dimensional space will also lie in the same plane. This
recognition allows us to see that the sum of two vectors will always lie in the
plane defined by the original two vectors.
As we noted in Vector
Subtraction, in order to
subtract one vector from another, you simply add its negative partner:
u - v=u + (- 1)v. Thus, vectors can be subtracted graphically in the same manner
used for adding them, by simply taking care to reverse the direction of the
vector being subtracted:
Figure %: The difference of the vectors u and v in the plane.
If you graphically add back in the subtracted vector to your result from the
subtraction and you recover the initial vector you subtracted from. In other
words, (u - v) + v = u in our graphical methods, as we should expect!
Scalar Multiplication
What happens graphically when we multiply a vector by a scalar? The vector
changes in length, while its direction remains the same. If the vector's
magnitude was previously | v|, once it is multiplied by a scalar we have
| av| = a| v|. Note that if | a| > 1 the new vector will be longer. If
| a| < 1 the new vector will be shorter. And if a < 0, the new vector will point
in the opposite direction as the original one.