No Fear Translations of Shakespeare’s plays (along with audio!) and other classic works
Flashcards
Mastery Quizzes
Infographics
Graphic Novels
AP® Test Prep PLUS
AP® Practice & Lessons
My PLUS Activity
Note-taking
Bookmarking
Dashboard
Annual
$22.49/month + tax
Save
25%
on 2-49 accounts
Annual
$20.99/month + tax
Save
30%
on 50-99 accounts
Focused-studying
Ad-free experience
Study Guides for 1,000+ titles
Full Text content for 250+ titles
PLUS Study Tools
No Fear Translations of Shakespeare’s plays (along with audio!) and other classic works
Flashcards
Mastery Quizzes
Infographics
Graphic Novels
AP® Test Prep PLUS
AP® Practice & Lessons
My PLUS Activity
Note-taking
Bookmarking
Dashboard
Testimonials from SparkNotes
Customers
No Fear
provides access to Shakespeare for students who normally couldn’t (or wouldn’t) read his plays.
It’s also a very useful tool when trying to explain Shakespeare’s wordplay!
Erika M.
I
tutor high school students in a variety of subjects. Having access to the literature
translations helps me to stay informed about the various assignments. Your summaries and
translations are invaluable.
Kathy B.
Teaching Shakespeare to today's generation can be challenging. No Fear helps a ton with
understanding the crux of the text.
Kay
H.
Testimonials from SparkNotes Customers
No Fear provides access to Shakespeare for students who normally couldn’t (or wouldn’t) read his plays. It’s also a very useful tool when trying to explain Shakespeare’s wordplay!
Erika M.
I tutor high school students in a variety of subjects. Having access to the literature translations helps me to stay informed about the various assignments. Your summaries and translations are invaluable.
Kathy B.
Teaching Shakespeare to today's generation can be challenging. No Fear helps a ton with understanding the crux of the text.
Kay H.
Create Account
Select Plan
3
Payment Info
4
Start 7-Day Free Trial!
Payment Information
You will only be charged after the completion of the 7-day free trial.
If you cancel your account before the free trial is over, you will not be charged.
You will only be charged after the completion of the 7-day free trial. If you cancel your account before the free trial is over, you will not be charged.
Order Summary
Annual
7-day Free Trial
SparkNotes PLUS
$29.99 / year
Annual
Quantity
51
PLUS Group Discount
$29.99 $29.99 / seat
Tax
$0.00
SPARK25
-$1.25
25% Off
Total billed on Nov 7, 2024 after 7-day free trail
$29.99
Total billed
$0.00
Due Today
$0.00
Promo code
This is not a valid promo code
Card Details
By placing your order you agree to our terms of service and privacy policy.
By saving your payment information you allow SparkNotes to charge you for future payments in accordance with their terms.
Powered by stripe
Legal
Google pay.......
Welcome to
Thank You!
Your group members can use the joining link below to redeem their membership. They will be prompted to log into an existing account or to create a new account.
All members under 16 will be required to obtain a parent's consent sent via link in an email.
Your Child’s Free Trial Starts Now!
Thank you for completing the sign-up process. Your child’s SparkNotes PLUS login credentials are [email] and the associated password.
If you have any questions, please visit our help center.
Your Free Trial Starts Now!
Please wait while we process your payment
Parent’s Email is Required
A parent must help manage your account. Enter their email below and we’ll send them a link to finish signing
up for SparkNotes PLUS.
We’ve sent an email to parentsname@email.com. In
order to access SparkNotes PLUS, your parent must click the link provided in the email.
We’ve sent an email to parentsname@email.com. In order to access
SparkNotes PLUS, your parent must follow the link provided in the email to complete the sign-up process.
Problem :
Find the critical points and inflection points of the function f (x) = x4 -2x2 (with domain
the set of all real numbers). Which of the critical points are local minima? local
maxima? Is there a global minimum or maximum?
We first calculate the derivatives of the function:
f'(x)
=
4x3 - 4x
=
4(x + 1)x(x - 1)
f''(x)
=
12x2 - 4
=
4(3x2 - 1)
We see that f'(x) = 0 when x = - 1, 0, or 1, so these are the three critical points of
f. We calculate the second derivatives at these points:
f''(- 1)
=
8
f''(0)
=
-4
f''(1)
=
8
so by the second derivative test, f has local minima at -1 and 1 and a local maximum
at 0. Substituting back into the original function yields
f (- 1)
=
-1
f (0)
=
0
f (1)
=
-1
so f attains its global minimum of -1 at x = ±1. It is clear from the graph of f
that it has no global maximum.
Figure %: Graph of f (x) = x4 -2x2
To find the points of inflection, we solve f''(x) = 0, or 12x2 - 4 = 0, which has
solutions x = ±1/3) ±0.58. Referring once again to the graph of f,
we can check that the concavity does indeed change at these x-values.
Problem :
Find the inflection points of f (x) = e-x2. (This famous function
is called the gaussian.)
We compute the derivatives:
f'(x)
=
-2xe-x2,
f''(x)
=
(- 2x)(- 2xe-x2) + (- 2)(e-x2)
=
(4x2 -2)e-x2
Solving f''(x) = 0 for x, we get the inflection points x = ±1/ 0.71.
This is reasonable when one considers the graph of f.
Figure %: Graph of f (x) = e-x2
Problem :
Find a function f (x) with inflection points at x = 1 and x = 2.
We need f''(1) = f''(2) = 0, so we might as well let
f''(x) = (x - 1)(x - 2) = x2 - 3x + 2
We search for a function with this derivative, ultimately obtaining
f'(x) = - + 2x
Similarly, a function with this derivative is given by