Search Menu

Contents

Formulae

Formulae

 
Addition of Angles sin(α + β) = sin(α)cos(β) + cos(α)sin(β);cos(α + β) = cos(α)cos(β) - sin(α)sin(β);tan(α + β) =
 
Double Angle sin(2x) = 2 sin(x)cos(x);cos(2x) = cos2(x) - sin2(x) = 1 - 2 sin2(x) = 2 cos2(x) - 1;tan(2x) =
 
Function Products sin(α)sin(β) = - (cos(α + β) - cos(α - β));cos(α)cos(β) = (cos(α + β) + cos(α - β));sin(α)cos(β) = (sin(α + β) + sin(α - β));cos(α)sin(β) = (sin(α + β) - sin(α - β))
 
Function Sums and Differences sin(α) + sin(β) = 2 sincos;cos(α) + cos(β) = 2 coscos;sin(α) - sin(β) = 2 cossin;cos(α) - cos(β) = - 2 sinsin
 
Half Angle sin() = ±;cos() = ±;tan() = ± = =
 
Subtraction of Angles sin(α - β) = sin(α)cos(β) - cos(α)sin(β);cos(α - β) = cos(α)cos(β) + sin(α)sin(β);tan(α - β) = .