Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews May 8, 2025 May 1, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Summary and Introduction
The first step to understanding gases is to spell out what exactly a gas is. Gases have two properties that set them apart from solids and liquids. First, gases spontaneously expand to fill the container they occupy, no matter its size. In other words, a gas has no fixed volume or shape. Secondly, gases are easily compressible.
You can imagine a gas as a busy swarm of molecules. Each molecule moves randomly and travels great distances before bouncing off another molecule. This occurs because the individual molecules comprising a gas are generally far apart. In fact, for a gas at low pressure, we can approximate that aside from a few random collisions, individual gas molecules do not interact. This approximation is what separates gases from solids and liquids, whose molecules always interact. The series of SparkNotes on Gases SparkNote seek to use this approximation about gases to establish the ideal gas law and the kinetic molecular theory. The ideal gas law macroscopically describes how gases behave under nearly all conditions. The kinetic molecular theory describes how sub-microscopic gas molecules interact with each other.
Of the three general terms used to describe gases (volume, temperature, pressure), pressure is the least familiar. Before we can delve into the gas theories, we need a firm understanding of it. Pressure is defined as force divided by the area over which the force acts:
pressure
P = ![]() |
So how does pressure relate to gases? If you will remember, a gas will fill any container that holds it. It is easy to see why with our swarm analogy. If a compact swarm of molecules is placed into a large container, the individual molecules will move about randomly and eventually stray from their original dimensions. Eventually, some intrepid molecules will reach the walls of the container. When they do, they will impact the walls of the container. These impacts generate a force, and hence a pressure on the walls of the container.
Please wait while we process your payment