Factoring ax2 + bx + c
This section explains how to factor expressions of the 
form ax2 + bx + c, where a, b, and c are integers.
First, factor out all constants which evenly divide all three terms.  If 
a is negative, factor out -1.  This will leave an expression of the 
form d (ax2 + bx + c), where a, b, c, and d are integers, and 
a > 0.  We can now turn to factoring the inside expression.
Here is how to factor an expression ax2 + bx + c, where a > 0:
- Write out all the pairs of numbers that, when multiplied, produce 
a.
- Write out all the pairs of numbers that, when multiplied, produce 
c.
- Pick one of the a pairs -- (a1, a2) -- and one of the c 
pairs -- (c1, c2).
- If c > 0:  Compute a1c1 + a2c2.  If | a1c1 + a2c2| = b, 
then the factored form of the quadratic is
- 
(a1x + c2)(a2x + c1) if b > 0.
- 
(a1x - c2)(a2x - c1) if b < 0.
 
- If a1c1 + a2c2≠b, compute a1c2 + a2c1.  If a1c2 + a2c1 = b, then the factored form of the quadratic is (a1x + c1)(a2x + c2) or (a1x + c1)(a2x + c2).  If a1c2 + a2c1≠b, pick another set of pairs.
- If c < 0:  Compute a1c1 -a2c2.  If | a1c1 - a2c2| = b, then 
the factored form of the quadratic is:
 
 (a1x - c2)(a2x + c1) where a1c1 > a2c2 if b > 0 and 
a1c1 < a2c2 if b < 0.
Using FOIL, the outside pair plus (or minus) the inside pair must equal 
b.
- Check.
Example 1:  Factor 3x2 - 8x + 4.
- Numbers that produce 3: (1, 3).
- Numbers that produce 4: (1, 4), (2, 2).
- 
- (1, 3) and (1, 4):  1(1) + 3(4) = 11≠8.  1(4) + 3(1) = 7≠ = 8.
- (1, 3) and (2, 2):  1(2) + 3(2) = 8.
- 
(x - 2)(3x - 2).
 
- Check: (x - 2)(3x - 2) = 3x2 -2x - 6x + 4 = 3x2 - 8x + 4.
Example 2:  Factor 12x2 + 17x + 6.
- Numbers that produce 12: (1, 12), (2, 6), (3, 4).
- Numbers that produce 6: (1, 6), (2, 3).
- 
- (1, 12) and (1, 6):  1(1) + 12(6) = 72.  1(6) + 12(1) = 18.
- (1, 12) and (2, 3):  1(2) + 12(3) = 38.  1(3) + 12(2) = 27.
- (2, 6) and (1, 6):  2(1) + 6(6) = 38.  2(6) + 6(1) = 18.
	
- (2, 6) and (2, 3):  2(2) + 6(3) = 22.  2(3) + 6(2) = 18.
	
- (3, 4) and (1, 6):  3(1) + 4(6) = 27.  3(6) + 4(1) = 22.
	
- (3, 4) and (2, 3):  3(2) + 4(3) = 18.  3(3) + 4(2) = 17.
 (3x + 2)(4x + 3).
- Check: (3x + 2)(4x + 3) = 12x2 +9x + 8x + 6 = 12x2 + 17x + 6.
Example 3:  Factor 4x2 - 5x - 21.
- Numbers that produce 4: (1, 4), (2, 2).
- Numbers that produce 21: (1, 21), (3, 7).
- 
- (1, 4) and (1, 21):  1(1) -4(21) = - 83.  1(21) - 4(1) = 17.
	
- (1, 4) and (3, 7):  1(3) - 4(7) = - 25.  1(7) - 4(3) = - 5.
 (x - 3)(4x + 7).
- Check: (x - 3)(4x + 7) = 4x2 +7x - 12x - 21 = 4x2 - 5x - 21.