No Fear Translations of Shakespeare’s plays (along with audio!) and other classic works
Flashcards
Mastery Quizzes
Infographics
Graphic Novels
AP® Test Prep PLUS
AP® Practice & Lessons
My PLUS Activity
Note-taking
Bookmarking
Dashboard
Annual
$22.49/month + tax
Save
25%
on 2-49 accounts
Annual
$20.99/month + tax
Save
30%
on 50-99 accounts
Focused-studying
Ad-free experience
Study Guides for 1,000+ titles
Full Text content for 250+ titles
PLUS Study Tools
No Fear Translations of Shakespeare’s plays (along with audio!) and other classic works
Flashcards
Mastery Quizzes
Infographics
Graphic Novels
AP® Test Prep PLUS
AP® Practice & Lessons
My PLUS Activity
Note-taking
Bookmarking
Dashboard
Testimonials from SparkNotes
Customers
No Fear
provides access to Shakespeare for students who normally couldn’t (or wouldn’t) read his plays.
It’s also a very useful tool when trying to explain Shakespeare’s wordplay!
Erika M.
I
tutor high school students in a variety of subjects. Having access to the literature
translations helps me to stay informed about the various assignments. Your summaries and
translations are invaluable.
Kathy B.
Teaching Shakespeare to today's generation can be challenging. No Fear helps a ton with
understanding the crux of the text.
Kay
H.
Testimonials from SparkNotes Customers
No Fear provides access to Shakespeare for students who normally couldn’t (or wouldn’t) read his plays. It’s also a very useful tool when trying to explain Shakespeare’s wordplay!
Erika M.
I tutor high school students in a variety of subjects. Having access to the literature translations helps me to stay informed about the various assignments. Your summaries and translations are invaluable.
Kathy B.
Teaching Shakespeare to today's generation can be challenging. No Fear helps a ton with understanding the crux of the text.
Kay H.
Create Account
Select Plan
3
Payment Info
4
Start 7-Day Free Trial!
Payment Information
You will only be charged after the completion of the 7-day free trial.
If you cancel your account before the free trial is over, you will not be charged.
You will only be charged after the completion of the 7-day free trial. If you cancel your account before the free trial is over, you will not be charged.
Order Summary
Annual
7-day Free Trial
SparkNotes PLUS
$29.99 / year
Annual
Quantity
51
PLUS Group Discount
$29.99 $29.99 / seat
Tax
$0.00
SPARK25
-$1.25
25% Off
Total billed on Nov 7, 2024 after 7-day free trail
$29.99
Total billed
$0.00
Due Today
$0.00
Promo code
This is not a valid promo code
Card Details
By placing your order you agree to our terms of service and privacy policy.
By saving your payment information you allow SparkNotes to charge you for future payments in accordance with their terms.
Powered by stripe
Legal
Google pay.......
Welcome to
Thank You!
Your group members can use the joining link below to redeem their membership. They will be prompted to log into an existing account or to create a new account.
All members under 16 will be required to obtain a parent's consent sent via link in an email.
Your Child’s Free Trial Starts Now!
Thank you for completing the sign-up process. Your child’s SparkNotes PLUS login credentials are [email] and the associated password.
If you have any questions, please visit our help center.
Your Free Trial Starts Now!
Please wait while we process your payment
Parent’s Email is Required
A parent must help manage your account. Enter their email below and we’ll send them a link to finish signing
up for SparkNotes PLUS.
We’ve sent an email to parentsname@email.com. In
order to access SparkNotes PLUS, your parent must click the link provided in the email.
We’ve sent an email to parentsname@email.com. In order to access
SparkNotes PLUS, your parent must follow the link provided in the email to complete the sign-up process.
The domain of a relation (or of a function) is the set of all inputs
of that relation. For example, the domain of the relation
(0, 1),(1, 2),(1, 3),(4, 6) is x=0, 1, 4.
The domain of the following mapping diagram is
-2, 3, 4, 10: Mapping Diagram
The domain of the following graph is : Graph
Restrictions on Domain
Most of the functions we have studied in Algebra I are defined
for all real numbers. This domain is denoted . For example, the domain of f (x) = 2x + 5 is , because
f (x) is defined for all real numbers x; that is, we can find f (x) for all
real numbers x. The domain of f (x) = x2 - 6 is also , because f (x) is defined for all real numbers x.
Some functions, however, are not defined for all the real numbers, and thus are
evaluated over a restricted domain. For example, the domain of f (x) = is , because we cannot take the square root of a
negative number. The domain of f (x) = is . The
domain of f (x) = is , because we cannot divide by zero.
In general, there are two types of restrictions on domain: restrictions of an
infinite set of numbers, and restrictions of a few points. Square root signs
restrict an infinite set of numbers, because an infinite set of numbers make the
value under the sign negative. To find the domain of a function with
a square root sign, set the expression under the sign greater than or equal to
zero, and solve for x. For example, find the domain of f (x) = - 11:
2x + 4
≥
0
2x
≥
-4
x
≥
-2
The domain of f (x) = - 11 is .
Rational expressions, on the other
hand, restrict only a few points, namely those which make the denominator equal
to zero. To find the domain of a function with a rational expression, set the
denominator of the expression not equal to zero and solve for x using the zero
product property. For example, find the domain of f (x) = :