Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews May 7, 2025 April 30, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Introduction to Conics
A conic is the intersection of a plane and a right circular cone. The four basic types of conics are parabolas, ellipses, circles, and hyperbolas. We've already discussed parabolas and circles in previous sections, but here we'll define them a new way. Study the figures below to see how a conic is geometrically defined.
In the conics above, the plane does not pass through the vertex of the cone. When the plane does intersect the vertex of the cone, the resulting conic is called a degenerate conic. Degenerate conics include a point, a line, and two intersecting lines.
The equation of every conic can be written in the following form: Ax2 + Bxy + Cy2 + Dx + Ey + F = 0. This is the algebraic definition of a conic. Conics can be classified according to the coefficients of this equation.
The determinant of the equation is B2 - 4AC. Assuming a conic is not degenerate, the following conditions hold true: If B2 -4AC > 0, the conic is a hyperbola. If B2 -4AC < 0, the conic is a circle, or an ellipse. If B2 - 4AC = 0, the conic is a parabola.
Another way to classify conics has to do with the product of A and C. Assuming a conic is not degenerate, the following conditions hold true: if AC > 0, the conic is an ellipse or a circle. If AC < 0, the conic is a hyperbola. If AC = 0, and A and C are not both zero, the conic is a parabola. Finally, if A = C, the conic is a circle.
In the following sections we'll study the other forms in which the equations for certain conics can be written, and what each part of the equation means graphically.
Please wait while we process your payment