Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews May 8, 2025 May 1, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Fundamentals of Rate Laws
Note that the exponents are not a and b but some experimentally determined powers p and q which may or may not equal a and b. The order of the is, therefore, p + q. We will discuss in Determining Rate Laws how those exponents can be determined.
Also notice in the the presence of the rate constant k. Students often have trouble distinguishing between the rate of a reaction and its rate constant. The rate of a reaction is the total rate of a reaction and is the "rate" in the rate law. The units of rate are always M / s. The rate constant, k, is an experimentally determined proportionality constant that gives some measure of the intrinsic "reactivity" of the reaction. The units on the rate constant depend on the order of the reaction, n, such that k has units M1 - n / s. In that way, the units of the rate constant, k, are chosen to make the units of rate always M / s regardless of order. For example, if the order of the reaction is 3, the rate law could be rate = k [A]2[B]. The units of rate are M / s and the rate constant must, therefore, have units of M-2 / s.
The attentive reader may have noticed that we have only considered the rate of the forward reaction, neglecting any sort of reverse reaction in the rate law. To make our math easier, we have intentionally ignored the reverse reaction and we will continue to do so. This is a justified practice for reactions with negligible reverse rates, such as those with equilibrium constants, K, much greater than 1. For reactions with K's around 1, this is also a valid approximation because they are usually carried out such that products are removed from the reaction mixture as they are formed, keeping concentrations of products low.
Rate laws can also be expressed to relate the concentration of reactants to the time of the reaction. Such an expression is called an integrated rate law because it is the integral of the differential rate law. For those of you who have had some calculus, we present a derivation of an integrated rate law from the differential rate law below for a first order reaction. If you have not had calculus, don't worry. Just pay attention to the end result of the derivation.
Rearranging this equation gives the following:
Using a similar technique, one can derive the integrated rate law for any differential rate law. As we will see in Determining Rate Laws, the fact that the 1st order integrated rate law is linear allows us to test if a reaction is first order by plotting ln [A] versus time.
Please wait while we process your payment