No Fear Translations of Shakespeare’s plays (along with audio!) and other classic works
Flashcards
Mastery Quizzes
Infographics
Graphic Novels
AP® Test Prep PLUS
AP® Practice & Lessons
My PLUS Activity
Note-taking
Bookmarking
Dashboard
Annual
$22.49/month + tax
Save
25%
on 2-49 accounts
Annual
$20.99/month + tax
Save
30%
on 50-99 accounts
Focused-studying
Ad-free experience
Study Guides for 1,000+ titles
Full Text content for 250+ titles
PLUS Study Tools
No Fear Translations of Shakespeare’s plays (along with audio!) and other classic works
Flashcards
Mastery Quizzes
Infographics
Graphic Novels
AP® Test Prep PLUS
AP® Practice & Lessons
My PLUS Activity
Note-taking
Bookmarking
Dashboard
Testimonials from SparkNotes
Customers
No Fear
provides access to Shakespeare for students who normally couldn’t (or wouldn’t) read his plays.
It’s also a very useful tool when trying to explain Shakespeare’s wordplay!
Erika M.
I
tutor high school students in a variety of subjects. Having access to the literature
translations helps me to stay informed about the various assignments. Your summaries and
translations are invaluable.
Kathy B.
Teaching Shakespeare to today's generation can be challenging. No Fear helps a ton with
understanding the crux of the text.
Kay
H.
Testimonials from SparkNotes Customers
No Fear provides access to Shakespeare for students who normally couldn’t (or wouldn’t) read his plays. It’s also a very useful tool when trying to explain Shakespeare’s wordplay!
Erika M.
I tutor high school students in a variety of subjects. Having access to the literature translations helps me to stay informed about the various assignments. Your summaries and translations are invaluable.
Kathy B.
Teaching Shakespeare to today's generation can be challenging. No Fear helps a ton with understanding the crux of the text.
Kay H.
Create Account
Select Plan
3
Payment Info
4
Start 7-Day Free Trial!
Payment Information
You will only be charged after the completion of the 7-day free trial.
If you cancel your account before the free trial is over, you will not be charged.
You will only be charged after the completion of the 7-day free trial. If you cancel your account before the free trial is over, you will not be charged.
Order Summary
Annual
7-day Free Trial
SparkNotes PLUS
$29.99 / year
Annual
Quantity
51
PLUS Group Discount
$29.99 $29.99 / seat
Tax
$0.00
SPARK25
-$1.25
25% Off
Total billed on Nov 7, 2024 after 7-day free trail
$29.99
Total billed
$0.00
Due Today
$0.00
Promo code
This is not a valid promo code
Card Details
By placing your order you agree to our terms of service and privacy policy.
By saving your payment information you allow SparkNotes to charge you for future payments in accordance with their terms.
Powered by stripe
Legal
Google pay.......
Welcome to
Thank You!
Your group members can use the joining link below to redeem their membership. They will be prompted to log into an existing account or to create a new account.
All members under 16 will be required to obtain a parent's consent sent via link in an email.
Your Child’s Free Trial Starts Now!
Thank you for completing the sign-up process. Your child’s SparkNotes PLUS login credentials are [email] and the associated password.
If you have any questions, please visit our help center.
Your Free Trial Starts Now!
Please wait while we process your payment
Parent’s Email is Required
A parent must help manage your account. Enter their email below and we’ll send them a link to finish signing
up for SparkNotes PLUS.
We’ve sent an email to parentsname@email.com. In
order to access SparkNotes PLUS, your parent must click the link provided in the email.
We’ve sent an email to parentsname@email.com. In order to access
SparkNotes PLUS, your parent must follow the link provided in the email to complete the sign-up process.
This equals zero when x = 0 or x = 4.
The direction of f (x) based on the sign of the derivative is depicted below:
f''(x)
=
=
=
This never equals zero. The concavity of the graph is depicted below:
To find the vertical asymptotes, take limits near the suspected asymptote:
= - ∞
= ∞
So, x = 2 is a vertical asymptote of the graph
To find the horizontal asymptotes, take limits at infinity:
= + ∞
= - ∞
Thus, f grows without bound, and there are no horizontal asymptotes
Now, find the exact coordinates of the intercepts and critical points:
y-intercept: (0, 0)x-intercept: (0, 0)
Critical Point: (0, 0) and (4, 8)
Combining the information from the first derivative work and the second derivative work
generates this single chart:
Based on this information, the graph may now be sketched:
Figure %: f (x) =
Problem :
Give a possible equation of the function graphed below:
To find an appropriate equation, begin by pulling out relevant features of the graph.
f has vertical asymptotes at x = 3 and x = - 3. Vertical asymptotes can occur where
the denominator of a rational function is equal to zero. Thus, the function in question
should look something like:
f (x) =
This is the same as
f (x) =
f has a horizontal asymptote at y = 2, which means that as x approaches infinity (or
negative infinity), the function approaches 2. Thus, the function must look something
like:
f (x) =
Finally, f (0) = - 3, so the equation must be modified to:
f (x) =
Problem :
Give a possible equation of the function graphed below:
As in the last problem, start with the vertical asymptotes:
f (x) =
f (x) =
Because of the horizontal asymptotes,
f (x) =
f (0) = 0, but this does not modify the equation of the function.
Problem :
Below is a sketch of the graph of f'(x). Use this to sketch a possible graph of f (x).
The information contained in the graph of f'(x) is enough to determine the sign and
concavity of f (x). It is possible to clearly pick out intervals where f'(x) is positive or
negative. Also, f''(x) is positive wherever f'(x) in increasing, and f''(x) is negative
wherever f'(x) is decreasing. Putting this information together generates the following
chart:
This can be graphed in the following way: