Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews May 8, 2025 May 1, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Theorems for Segments within Triangles
The midsegment of a triangle is a segment whose endpoints are both midpoints of sides. Every triangle has three midsegments. The midsegment of a triangle is always parallel to the third side (the side whose midpoint it doesn't include), and half as long as the third side.
The angle bisectors of a triangle intersect each other at a point called the incircle of the triangle. The incircle of a triangle is the same as the center of a circle inscribed in a triangle. Every triangle can have exactly one inscribed circle, whose center is the incircle of the triangle, which is the point at which the angle bisectors of the triangle intersect. The incircle, then, is equidistant from the three sides of the triangle--a property that results from the inherent congruency of the radii of a circle.
Another property of angle bisectors has to do with the side opposite the bisected angle. An angle bisector divides the side opposite the bisected angle into two segments that are of the same proportion as the other two sides. For example, in triangle ABC above, let the angle at vertex A be bisected, and let the bisector intersect BC at point D. BD/DC = BA/CA.
The three perpendicular bisectors of a triangle intersect at one point called the circumcenter of a triangle. The circumcenter is the center of the circle circumscribed about the triangle and is equidistant from all the vertices of the triangle. In this case the perpendicular bisectors of the sides of the triangles are lines, not segments. Therefore, the circumcenter of a triangle does not necessarily exist in the interior of the triangle. Often the perpendicular bisectors of a triangle intersect outside the triangle.
Please wait while we process your payment