Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews May 7, 2025 April 30, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Deductive Reasoning
Deductive reasoning, unlike inductive reasoning, is a valid form of proof. It is, in fact, the way in which geometric proofs are written. Deductive reasoning is the process by which a person makes conclusions based on previously known facts. An instance of deductive reasoning might go something like this: a person knows that all the men in a certain room are bakers, that all bakers get up early to bake bread in the morning, and that Jim is in that specific room. Knowing these statements to be true, a person could deductively reason that Jim gets up early in the morning. Such a method of reasoning is a step-by-step process of drawing conclusions based on previously known truths. Usually a general statement is made about an entire class of things, and then one specific example is given. If the example fits into the class of things previously mentioned, then deductive reasoning can be used. Deductive reasoning is the method by which conclusions are drawn in geometric proofs.
Deductive reasoning in geometry is much like the situation described above, except it relates to geometric terms. For example, given that a certain quadrilateral is a rectangle, and that all rectangles have equal diagonals, what can you deduce about the diagonals of this specific rectangle? They are equal, of course. An example of deductive reasoning in action.
Although deductive reasoning seems rather simple, it can go wrong in more than one way. When deductive reasoning leads to faulty conclusions, the reason is often that the premises were incorrect. In the example in the previous paragraph, it was logical that the diagonals of the given quadrilateral were equal. What if the quadrilateral wasn't a rectangle, though? Maybe it was actually a parallelogram, or a rhombus. In such a case, the process of deductive reasoning cannot be used. The fact that the diagonals of a rectangle are equal tells us nothing relevant about the diagonals of a parallelogram or a rhombus. The premises used in deductive reasoning are in many ways the most important part of the entire process of deductive reasoning. If they are incorrect, the foundation of the whole line of reasoning is faulty, and nothing can be reliably concluded. Even if just one conclusion is incorrect, every conclusion after that is unreliable, and may very well be incorrect, also.
Another instance in which deductive reasoning doesn't work is when it is not executed properly. Using the example in the first paragraph, let's add the premise that Bob is a baker. Can we deduce that Bob is in the room? We could only deduce this if we knew that everybody who was a baker was in the room. This was not one of the premises, though. When reading premises, it is very important not to assume anything more than exactly what is written. In Logic Statements we'll more carefully examine exactly what occurs when premises are misused and lead to false conclusions. For know, it is enough to know that deductive reasoning is perfectly effective when all of the premises are true, and each step in the process of deductive reasoning follows logically from the previous step.
Please wait while we process your payment