| Addition of Angles | sin(α + β) = sin(α)cos(β) + cos(α)sin(β);cos(α + β) = cos(α)cos(β) - sin(α)sin(β);tan(α + β) = ![]() |
| Double Angle | sin(2x) = 2 sin(x)cos(x);cos(2x) = cos2(x) - sin2(x) = 1 - 2 sin2(x) = 2 cos2(x) - 1;tan(2x) = ![]() |
| Function Products | sin(α)sin(β) = - (cos(α + β) - cos(α - β));cos(α)cos(β) = (cos(α + β) + cos(α - β));sin(α)cos(β) = (sin(α + β) + sin(α - β));cos(α)sin(β) = (sin(α + β) - sin(α - β)) |
| Function Sums and Differences | sin(α) + sin(β) = 2 sin![]() ![]() cos![]() ![]() ;cos(α) + cos(β) = 2 cos![]() ![]() cos![]() ![]() ;sin(α) - sin(β) = 2 cos![]() ![]() sin![]() ![]() ;cos(α) - cos(β) = - 2 sin![]() ![]() sin![]() ![]() ![]() |
| Half Angle | sin( ) = ± ;cos( ) = ± ;tan( ) = ± = = ![]() |
| Subtraction of Angles | sin(α - β) = sin(α)cos(β) - cos(α)sin(β);cos(α - β) = cos(α)cos(β) + sin(α)sin(β);tan(α - β) = .
|


(cos(α + β) - cos(α - β));

cos

;
) = ±
;
;
=
= 
