Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews October 9, 2023 October 2, 2023
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Problem :
A wire of length 10 cm carries a current of 5 esu/s parallel to a magnetic field of 10 gauss. What is the magnitude of the force on the wire?
Since the moving charges (in the wire) are moving parallel to the magnetic field, no net force acts on the wire.
Problem :
A wire of length 10 cm carries a current of 3×104 esu/s perpendicular to a magnetic field of 10 gauss. What is the magnitude of the force on the wire?
Now the charges are moving perpendicular to the magnetic field, and the force on
the wire is given by our equation F = =
= 1×10-4 dynes. This small value shows
how small the effect of magnetic fields are in practical situations, and why the
relation between magnetic fields and current went undetected for such a long
time.
Problem :
A wire in the shape of a square with sides 5 cm carries a current of 1 amp, or
3×109 esu/sec in a plane parallel to a magnetic field of 100 gauss, as
shown below. What is the net force on the wire? What is the net torque?
To find the force on the wire we must look at each part of the wire
individually. There are four sections: each side of the square. The current in
two sections moves parallel or antiparallel to the magnetic field, and thus
experience no force. The other two sections have a current perpendicular to the
magnetic field, and each segment experiences a force of
F = =
= 50 dynes. However,
because the current flows in opposite directions, the forces are in opposite
directions and there is no net force on the wire.
What about torque, though? If we designate an axis of rotation through the
wire, as shown below, both forces act to rotate the wire in the same direction.
Problem :
In CGS units, F = . What does this equation convert to in SI units?
Clearly the same physical quantities of q, v, and B must be involved, but the factor of 1/c might be changed. Consider a particle of 1 coulumb (3×109 esu) traveling at a speed of 1 m/s (100cm/s) in a uniform field of 1 Tesla (10000 gauss). Using the formula we know (CGS units), the force in this situation is:
F = qvB |
Please wait while we process your payment