Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews May 7, 2025 April 30, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Problems on the Twin Paradox 2
Problem : A spacecraft travels at 0.99c to a star 3.787×1013 kilometers away. How long will a roundtrip to this star take from the point of view of someone on the earth?
If we calculate the number of seconds in a year it turns out that 3.787×1016 meters is about 4 light-years (the distance light travels in one year at c). The spacecraft is traveling virtually at c, so the trip to the star takes 4 years of earth time. The roundtrip takes 8 years.Problem : With reference to the previous problem, how long will the roundtrip take for someone in the spaceship, according to someone measuring from the earth?
According to an observer on the earth, since the spacecraft is moving, its passengers' time is dilated. The factor by which this occurs is γ =Problem : Now in the reference frame of someone in the spaceship, what is the time taken for the roundtrip as observed by a passenger, and by someone on earth (ignoring the times when the spaceship is accelerating or decelerating).
The whole point of the twin paradox is that a passenger on the spaceship apparently measures the opposite: that is, that the trip takes 8 years for them, but only 1.1 years for those standing back on the earth. It turns out that this reasoning is incorrect and in fact the passengers measure the same times as an observer on the earth when the (General Relativistic) effects of acceleration and deceleration are taken into account.Problem : If one person stays on earth and one person travels to the distant star, who will age more during the trip and by what amount?
As we have seen, the reasoning of the passenger on the spaceship is erroneous because the spaceship is not in an inertial reference frame. The reasoning of the person on earth is correct (the earth is approximately inertial). They measure the passenger as aging less than themselves by an amount 8 - 1.1 = 6.9 years.Problem : Twin A floats freely in outer space. Twin B flies past in a spaceship at speed v0. Just as they pass each other they both start timers at t = 0. At the instant of passing B also turns on his engines so as to decelerate at g. This causes B to slow down and eventually to stop and accelerate back towards A so that when the twins pass each other again B is traveling at speed v0 again. If they compare their clocks, who is younger?
This is just a variation of the same problem (that is, the twin paradox as stated in Section 2). Twin A is in an inertial reference frame so she can successfully apply the logic of Special Relativity to find that B's time is dilated and hence that B is younger. B is not in an inertial reference frame so the opposite reasoning does not apply, and we conclude that when all the effects of the acceleration are accounted for he must agree with his twin that he is younger.Please wait while we process your payment