Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews December 6, 2023 November 29, 2023
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
The so-called 'Twin Paradox' is one of the most famous problems in all of science. Fortunately for relativity it is not a paradox at all. As has been mentioned, Special and General Relativity are both self-consistent within themselves and within physics. We will state the twin paradox here and then describe some of the ways in which the paradox can be resolved.
The usual statement of the paradox is that one twin (call her A) remains at rest on the earth relative to another twin who flies from the earth to a distant star at a high velocity (compared to c). Call the flying twin B. B reaches the star and turns around and returns to earth. The twin on earth (A) will see B's clock running slowly due to time dilation. So if the twins compare ages back on earth, twin B should be younger. However, from B's point of view (in her reference frame) A is moving away at high speed as B moves towards the distant star and later A is moving towards B at high speed as B moves back towards the earth. According to B, then, time should run slowly for A on both legs of the trip; thus A should be younger than B! It is not possible that both twins can be right-the twins can compare clocks back on earth and either A's must show more time than B's or vice-versa (or perhaps they are the same). Who is right? Which twin is younger?
The reasoning from A's frame is correct: twin B is younger. The simplest way to explain this is to say that in order for twin B to leave the earth and travel to a distance star she must accelerate to speed v. Then when she reaches the star she must slow down and eventually turn around and accelerate in the other direction. Finally, when B reaches the earth again she must decelerate from v to land once more on the earth. Since B's route involves acceleration, her frame cannot be considered an inertial reference frame and thus none of the reasoning applied above (such as time dilation) can be applied. To deal with the situation in B's frame we must enter into a much more complicated analysis involving accelerating frames of reference; this is the subject of General Relativity. It turns out that while the B is moving with speed v A's clock does run comparatively slow, but when B is accelerating the A's clocks run faster to such an extent that the overall elapsed time is measured as being shorter in B's frame. Thus the reasoning in A's frame is correct and B is younger.
However, we can also resolve the paradox without resorting to General Relativity. Consider B's path to the distant star lined with many lamps. The lamps flash on and off simultaneously in twin A's frame. Let the time measured between successive flashes of the lamps in A's frame be tA. What is the time between flashes in B's frame? As we learned in Heading the flashes cannot occur simultaneously in B's frame; in fact B measures the flashes ahead of him to occur earlier than the flashes behind him (B is moving towards those lamps ahead of him). Since B is always moving towards the flashes which happen earlier the time between flashes is less in B's frame. In B's frame the distance between flash-events is zero (B is at rest) so ΔxB = 0, thus ΔtA = γ(ΔtB - vΔxB/c2) gives:
ΔtB = ![]() |
TB = ![]() |
All this is fine. But what about in B's frame? Why can't we employ the same analysis of A moving past
flashing lamps to show that in fact A is younger? The simple answer is that the concept of 'B's frame' is
ambiguous; B in fact is in two different frame depending on her direction of travel. This can be seen on the
Minkowski diagram in :
(half the total journey time times
the speed) which is also equal to d /γ due to the usual length
contraction. Thus:
TB = ![]() | |||
TA = ![]() ![]() |
TA = ![]() ![]() |
Please wait while we process your payment