Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews May 8, 2025 May 1, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Processes with Heat and Work
Though we have shown the net flow of energy and entropy, we haven't proposed a more specific mechanism for the heat engine. The most basic cycle is known as the Carnot cycle, and is simple if not completely accurate for a real engine. Still, it is beneficial to see a simplified picture to understand the basic concepts.
The Carnot cycle consists of four phases. Refer to as we trace the steps of the cycle. At point A, the gas (it needn't be a gas necessarily) is at temperature τh with entropy σL where the latter represents the lowest entropy attained by the system during the cycle and is distinct from σl. The gas is then expanded at constant temperature and the entropy is increased to σH at point B. The expansion is isothermal, that is, performed at a constant temperature.
Now, the gas is expanded further, but at constant entropy. The temperature falls to τl during this isentropic process and arrives at point C. The gas is then compressed isothermally to point D, and is compressed isentropically back to point A, thus completing one cycle.
The total work accomplished by the system can be written from our previous results as W = Δτ×σh. Looking at the figure again, we see that this is merely the area enclosed by the rectangle. This yields a nice graphical method of understanding a simple version of a heat engine.
We have stressed throughout that knowing well the energy identities makes problem solving much easier, and we have seen this in many of the problems we have tackled. It appears again here, as we discuss processes performed on a gas.
For an isothermal expansion or compression, we wish to deal with an energy where τ appears as a differential. Conventionally, the Helmholtz free energy is used. Barring any diffusive exchange, we can see that dF gives us dU - dQ, which is exactly the work done on the system.
Please wait while we process your payment