

The Most Common Word Problems
Word problems come in all shapes and sizes. But each and
every year, the SAT includes certain particular varieties. We’ve
got the skinny on ’em.
Rates
A rate is a ratio of related qualities that have
different units. For example, speed is a rate that relates the two
quantities of distance and time. Here is the general rate formula:
No matter the specifics, the key to a rate word problem
is in correctly placing the given information in the three categories: A, r,
and B. Then, you can substitute the values
into the rate formula. We look at the three most common types of
rate: speed, work, and price.
Speed
In the case of speed, time is quantity A and
distance is quantity B. For example,
if you traveled for 4 hours at 25 miles
per hour, then
Usually, the new SAT won’t simply give you one of the
quantities and the rate and ask you to plug it into the rate formula.
Since rate questions are always in the form of word problems, the
information that you’ll need to solve the problem is often given in
the befuddling complicated manner you’ve grown to know and hate.
Here’s an example:

This question provides more information than
simply the speed and one of the quantities. You get unnecessary
facts such as how Jim is traveling (by rollerskates) and when he
started (in the morning). Ignore them and focus on the facts you
need to solve the problem.
 Quantity A: x hours rollerskating
 Rate: 6 miles per hour
 Quantity B: 60 miles
Here’s a more difficult rate problem:

You should immediately pick out the given rate of 528,000
feet per hour and notice that the total distance traveled is 480
miles. You should also notice that the question presents a units
problem: The given rate is in feet per hour, while
the total distance traveled is given in miles.
Sometimes a question gives you inconsistent units, as
in this example. Always read over the problem carefully
and don’t forget to adjust the units—the SAT makes sure that the
answer you would come to if you had forgotten to correct for units appears
among the answer choices.
For the cycling question, since the question tells you
that there are 5,280 feet in a mile, you can find the
rate for miles per hour:
Now you can plug the information into the rate formula:
 Time: x hours cycling
 Rate: 100 miles per hour
 Distance: 480 miles
Work
Work sucks. You’re there from 9 to 5 and, at best, you
get two weeks off per year, and you’ve got a boss constantly checking
up on you. Work word problems on the SAT are a breeze in comparison.
On work word problems, you’ll usually find the first quantity measured
in time (t), the second quantity measured
in work done (w), and the rate measured
in work done per time (r). For example,
if you knitted for 8 hours and produced 2 sweaters
per hour, then
Here’s a sample work problem. It’s one of the harder rate
word problems you might come across on the SAT:

First, examine what that problem says: 4 workers
can dig a 40foot well in 4 days. You
know how much total work was done and how many people did it, you
just don’t know the rate at which the workers worked. You need that
rate, since the 8 workers digging the 60foot
wells are working at the same rate. Since , you can get the rate by dividing 40 by 4,
which equals 10. The workers together dig at a pace
of 10 feet per day.
Now for that group of 8 workers digging a 60foot
well. The total work (w) done by the 8 workers
is 60 feet, and they work at a rate (r)
of 10 feet per day per 4 workers. Can
you use this information to answer the question? Oh yeah. The rate
of 10 feet per day per 4 workers converts
to 20 feet per day per 8 workers, which
is the size of the new crew. Now you can use the rate formula:
 Time: x days of work
 Rate: 20 feet per day per 8 workers
 Work Done (in this case, distance dug): 60 feet
This last problem required a little bit of creativity—but
nothing you can’t handle. Just remember the classic rate formula
and use it wisely.
Price
In rate questions dealing with price, you’ll usually find
the first quantity measured in numbers of items, the second measured
in price, and the rate in price per item. If you have 8 basketballs,
and you know that each basketball costs $25,
Exponential Growth and Decay
Exponential growth and decay problems are like percent
change problems on steroids: You must perform a percent change over
and over again. You can use exponents on these repeated percent
change questions. Here’s an example:

You could do two things to solve this problem. You could
multiply each successive generation by 5% fifty times to get the
final answer, or you could use this formula:
Final Amount = Original Amount × (1 + Growth Rate)^{(number of
changes)}
The formula is probably the better bet. So, to solve this
problem,
final amount =
Exponential decay only slightly modifies the formula:
Final Amount = Original Amount × (1 – Growth Rate)^{(number of
changes)}
Exponential decay is often used to model population decreases
as well as the decay of physical mass.
We’ll work through a few example problems to get a feel
for both exponential growth and decay problems.
A Simple Exponential Growth Problem

You’ve got an original population of 100,
a growth rate of .35 every hour, and 6 hours.
To solve the problem, you just need to plug the appropriate values
into the formula for exponential growth.
final amount =
A Simple Exponential Decay Problem

Since the beach ball loses air, you know this is an exponential
decay problem. The decay rate is .06, the original
amount is 4000 cubic centimeters of air, and the time
is 10 days. Plugging the information into the formula,
final amount =
A More Annoying Exponential Growth Problem

This problem is a bit tricky because the interest rate
is per month, while the time period is given in years. You need
to make the units match up. In the twoyear time period given by
the question, there will be 2 × 12 = 24 months
final amount =
Here’s another compounding problem:

Ben’s account will have $2000 × 1.05^{15} ≈ $4157.85 in
it after 15 years. Justin’s account will have $2500 × 1.04^{15} ≈ $4502.36 in
it. Justin’s account will still have more money in it than Ben’s
after 15 years. Notice, however, that Ben’s account is gaining
on Justin’s account.
And with that, you’ve covered everything you need to know
to rock SAT algebra. Geometry’s next.
