Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews September 30, 2023 September 23, 2023
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
In a stable mixed ESS, we can calculate the optimal ratio of strategy A players to strategy B players. We let p=percentage of strategy A players and q=percentage of strategy B players. The sum of these percentages is equal to 1, comprising the entire population (p+q=1). The fitness of strategy A players equals the chance that the player he encounters will be another A player (chance = p) times the payoff Q, plus the chance that he will play a B player (chance=q) times the payoff R. The fitness of a strategy B player is similarly the chance that he will play another B player(chance = q), times the payoff T, plus the chance he will meet a strategy A player (chance=p), times the payoff S. Thus we have two equations and two unknowns, p and q, for which we can solve. This gives us the expected ratio of strategy A and strategy B players in the given population.
p + q = 1
pQ + qR = pS + qT
The Hawk-Dove Game is a classic example of game theory used in animal behavior. In this model, we have two animals (not necessarily birds) that are capable of choosing from two strategies when in conflict with one another. The animal can choose to be a "hawk" and escalate to a fight or the animal can choose to be a "dove" and peacefully back down. Hawks are always willing to fight, and so if two hawks meet, there will always be a fight. Winners receive the benefit, while losers face the cost of the fight. Doves flee, and so are never involved in a fight. There is no cost to be a dove, only the possibility of receiving no payoff.
In , the benefit for player 1 as a hawk meeting another hawk is the benefit of winning (B) minus the cost of losing the fight (C) divided by two because both hawk players have an equal chance of winning. Half the time player 1 will win and half the time he will lose. Should the hawk meet a dove, the hawk will always win, and so the payoff is just the benefit of winning. If player 1 chooses to be a dove, and meets a hawk, he will lose, and so there is no benefit. However, if player 1 as a dove meets another dove, they will share the benefit, because there is no fight and therefore no cost.
If the benefit of winning is greater than the cost of losing a fight (B>C), then the only evolutionarily stable strategy is to be a pure hawk ESS. Hawks will always do better than doves, because the payoff for being a hawk is greater than that of the dove no matter which strategy his opponent plays. However, if the cost of losing the fight is greater than the benefit of winning (C>B), then the only ESS is to mix up your strategy, playing hawk sometimes and dove sometimes. You can calculate the percentage of time each strategy should be played by calculating p and q as in the previous section, Heading .
Predictions of the Hawk-Dove game lead us to some general conclusions about conflicts of this sort. In a population of mostly hawks, doves will do better than hawks if there is a high fight cost. As the ratio of cost to benefit increases, the population of hawks will decrease. Other strategies can be incorporated into this game. For instance if a challenger wishes to displace the occupant of a territory, the owner will probably play hawk more often than the ESS would call for, because he has already invested energy into his territory. The challenger will play dove more often because he has less to lose.
The Prisoner's Dilemma is a classic game used in behavioral biology, psychology, and even in business. In this game, we have two partners in crime who are brought into the police station for interrogation. They are isolated from each other immediately and interrogated separately so they do not have the chance to discuss a strategy. Each prisoner has two options, he can cooperate with his partner or he can defect and confess. If both cooperate with each other, neither is caught, both are rewarded, and so there is a high payoff (3). However, if you cooperate and your partner rats you out, you become the sucker and go to jail while he gets away (0). If you defect while your partner keeps silent, the payoff is the highest (5), because you can probably receive immunity for any crime you committed. If you both rat each other out, you may get time off for confessing, but you will both still be punished (1). Given the stated payoffs, the logical action seems to be to defect no matter what your partner does because your payoff is always higher if you defect. This is true when the game is only played once. However, in situations when the game or contest repeats several times, the optimal strategy is to mimic your partner's behavior.
Please wait while we process your payment