Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews September 29, 2023 September 22, 2023
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
A hormone is a chemical that affects the ways in which an organism functions; it is produced in one part of the plant (or animal) body but affects many other parts of the body as well. Hormones work by coming in contact with target cells, causing the organism to respond in various ways to the chemical signal. In plants, hormones usually work by influencing cell differentiation, elongation, and division. They also affect the timing of reproduction and germination. These hormones are divided int o five categories: auxins, cytokinins, gibberellins, inhibitors (or abscisic acid), and ethylene.
The primary function of the auxin hormones is to elongate plant cells in the stem. For instance, auxins are the hormones responsible for phototropism, the growth of a plant toward the light. Phototropism results from the rapid elongation of cells on the dark side of the plant, which causes the plant to bend in the opposite direction. The acid growth hypothesis explains this occurrence by speculating that auxins trigger proton pumps in cell membranes, lowering the pH in the cell wall to such an extent that the hydrogen bonds holding its cellulose fibers together break apart. These broken bonds give the cell wall greater flex ibility and expandability, so that more water can enter the cell by diffusion, causing the cell itself to elongate.
Auxins are also responsible for adventitious root development, secondary growth in the vascular cambium, inhibition of lateral branching, and fruit development. In fact, seedless fruits can be artificially created by applying synthetic auxin to plants; this causes fruit to develop even though fertilization (and thus seed formation) has not occurred.
The cytokinin hormones promote cell division and tissue growth, and depend upon the presence of auxins to determine the extent of their activity. When the ratio of cytokinins to auxins is relatively high, stem and leaf growth is stimulated. When, on the other hand, the ratio of cytokinins to auxins is relatively low, root growth is stimulated instead. The balance between these hormones ensures that the plant invests in both root and shoot growth, so that neither becomes too large or small for the other. Cytokinins are also involved in the development of chloroplasts, fruits, and flowers. In addition, they have been show n to delay senescence (aging), especially in leaves, which is one reason that florists use cytokinins on freshly cut flowers.
Gibberellins stimulate growth, especially elongation of the stem, and can also end the dormancy period of seeds and buds by encouraging germination. Additionally, gibberellins play a role in root growth and differentiation, and produce an enzyme that pro motes the conversion of an embryo's starchy food supply into utilizable sugars. In some plants, these hormones are essential for flowering and fruit development.
True to their name, inhibitors restrain growth and maintain the period of dormancy in seeds and buds. The most important of this type of hormone is abscisic acid, which in addition to restraining growth, causes the guard cells, of the stomata to close when the plant is losing too much water.
Ethylene is best known for controlling the ripening of fruits. It also contributes to the senescence (aging) of plants by promoting leaf loss (termed leaf abscission) and other changes. Ethylene can bring buds and seeds out of dormancy, initiate flo wer development, and promote radial (horizontal) growth in roots and stems. Interestingly, in certain circumstances ethylene can also act as a growth inhibitor, most often in conjunction with auxin.
Please wait while we process your payment