Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews December 11, 2023 December 4, 2023
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Acids and bases play a central role in chemistry because, with the exception of redox reactions, every chemical reaction can be classified as an acid-base reaction. Our understanding of chemical reactions as acid-base interactions comes from the wide acceptance of the Lewis definition of acids and bases, which supplanted both the earlier Bronsted-Lowry concept and the first definition--the Arrhenius model. Arrhenius first defined acids as proton (H+) producers in aqueous solution and bases as hydroxide (OH-) producers. Although this model is intuitively correct, it is limited to substances that include proton and hydroxide groups. Bronsted and Lowry proposed the more general definitions of acids and bases as proton donors and acceptors, respectively. Unlike the Arrhenius conception, the Bronsted-Lowry model accounts for acids in solvents other than water, where the proton transfers do not necessarily involve hydroxide ions. But the Bronsted-Lowry model fails to explain the observation that metal ions make water more acidic (discussed in Calculating pH's). Finally, Lewis gave us the more general definition of acids and bases that we use today. According to Lewis, acids are electron pair acceptors and bases are electron pair donors. Any chemical reaction that can be represented as a simple exchange of valence electron pairs to break and form bonds is therefore an acid-base reaction.
Acid-base chemistry is important to us on a practical level as well, outside of laboratory chemical reactions. Our bodily functions, ranging from the microscopic transport of ions across nerve cell membranes to the macroscopic acidic digestion of food in the stomach, are all ruled by the principles of acid-base chemistry. Homeostasis, the temperature and chemical balances in our bodies, is maintained by acid-base reactions. For example, fluctuations in the pH, or concentration of hydrogen ions, of our blood is moderated at a comfortable level through use of buffers. Learning how buffers work and what their limitations are can help us to better understand our physiology. We will start by introducing fundamentals of acid-base chemistry and the calculation of pH, and then we will cover techniques for measuring pH. We learn about buffers and see how they are applied to measure the acidic content of solutions through titration.
Please wait while we process your payment