Here are the steps to completing the square, given an equation ax2 + bx + c:
- Compute d =
.
- Add and subtract ad2 to the equation. This produces an equation of the form y = ax2 +2adx + ad2 - ad2 + c.
- Factor ax2 +2adx + ad2 into a(x + d )2. This produces and equation of the form y = a(x + d )2 - ad2 + c.
- Simplify ad2 + c. This produces an equation of the form y = (x - h)2 + k.
- Check by plugging the point (h, k) into the original equation. It should satisfy the equation.
Example 1: Complete the square: y = x2 + 6x - 12
a = 1, b = 6, c = - 12
-
d =
= 3
-
ad2 = 9. y = (x2 + 6x + 9) - 9 - 12
-
y = (x + 3)2 - 9 - 12
-
y = (x + 3)2 - 21
- Check: -21 = (- 3)2 + 6(- 3) - 12
Example 2: Complete the square: y = 4x2 + 16x
a = 4, b = 16, c = 0
-
d =
= 2
-
ad2 = 16. y = (4x2 + 16x + 16) - 16
-
y = 4(x + 2)2 - 16
-
y = 4(x + 2)2 - 16
- Check: -16 = 4(- 2)2 + 16(- 2)
Example 3: Complete the square: y = 2x - 28x + 100
a = 2, b = - 14, c = 100
-
d =
= - 7
-
ad2 = 98. y = (2x - 28x + 98) - 98 + 100
-
y = 2(x - 7)2 - 98 + 100
-
y = 2(x - 7)2 + 2
- Check: 2 = 2(7)2 - 28(7) + 100
Example 4: Complete the square: y = - x2 + 10x - 1
a = - 1, b = 10, c = - 1
-
d =
= - 5
-
ad2 = - 25. y = (- x2 + 10x - 25) + 25 - 1
-
y = - (x - 5)2 + 25 - 1
-
y = - (x - 5)2 + 24
- Check: 24 = - 52 + 10(5) - 1
After we complete the square, we can graph the quadratic equation using the vertex.