Continuing to Payment will take you to apayment page

Purchasing
SparkNotes PLUS
for a group?

Get Annual Plans at a discount when you buy 2 or more!

Price

$24.99$18.74/subscription + tax

Subtotal $37.48 + tax

Save 25%
on 2-49 accounts

Save 30%
on 50-99 accounts

Want 100 or more?
Contact us
for a customized plan.

Continuing to Payment will take you to apayment page

Your Plan

Payment Details

Payment Details

Payment Summary

SparkNotes Plus

You'll be billed after your free trial ends.

7-Day Free Trial

Not Applicable

Renews December 4, 2023November 27, 2023

Discounts (applied to next billing)

DUE NOW

US $0.00

SNPLUSROCKS20 | 20%Discount

This is not a valid promo code.

Discount Code(one code per order)

SparkNotes PLUS
Annual Plan - Group Discount

Qty: 00

SubtotalUS $0,000.00

Discount (00% off)
-US $000.00

TaxUS $XX.XX

DUE NOWUS $1,049.58

SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.

Choose Your Plan

Your Free Trial Starts Now!

For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!

Thank You!

You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.

No URL

Copy

Members will be prompted to log in or create an account to redeem their group membership.

Thanks for creating a SparkNotes account! Continue to start your free trial.

Please wait while we process your payment

Your PLUS subscription has expired

We’d love to have you back! Renew your subscription to regain access to all of our exclusive, ad-free study tools.

When proving that triangles are congruent, it is not
necessary to prove that
all three pairs of corresponding angles and all three pairs of corresponding
sides are congruent. There are shortcuts. For example, if two pairs of
corresponding angles are congruent, then the third angle pair is also congruent,
since all triangles have 180 degrees of interior angles. The following three
methods are shortcuts for determining congruence between triangles without
having to prove the congruence of all six corresponding parts. They are called
SSS, SAS, and ASA.

SSS (Side-Side-Side)

The simplest way to prove that triangles are congruent is to prove that all
three sides of the triangle are congruent. When all the sides of two triangles
are congruent, the angles of those triangles must also be congruent. This
method is called side-side-side, or SSS for short. To use it, you must know the
lengths of all three sides of both triangles, or at least know that they are
equal.

SAS (Side-Angle-Side)

A second way to prove the congruence of triangles is to show that two sides and
their included angle are congruent. This method is called side-angle-side. It
is important to remember that the angle must be the included
angle--otherwise you can't be sure of congruence.
When two sides of a triangle and the angle between them are the same as the
corresponding parts of another triangle there is no way that the triangles
aren't congruent. When two sides and their included angle are fixed, all three
vertices of the triangle are fixed. Therefore, two sides and their included
angle is all it takes to define a triangle; by showing the congruence of these
corresponding parts, the congruence of each whole triangle follows.

ASA (Angle-Side-Angle)

The third major way to prove congruence between triangles is called ASA, for
angle-side-angle. If two angles of a triangle and their included side are
congruent, then the pair of triangles is congruent. When the side of a triangle
is determined, and the two angles from which the other two sides point, the
whole triangle is already determined, there is only one point, the third vertex,
where those other sides could possibly meet. For this reason, ASA is also a
valid shortcut/technique for proving the congruence of triangles.