Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews June 13, 2023 June 6, 2023
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
So far, the graphs we have drawn are defined by one equation: a function with two variables, x and y. In some cases, though, it is useful to introduce a third variable, called a parameter, and express x and y in terms of the parameter. This results in two equations, called parametric equations.
Let f and g be continuous functions (functions whose graphs are unbroken curves) of the variable t. Let f (t) = x and g(t) = y. These equations are parametric equations, t is the parameter, and the points (f (t), g(t)) make up a plane curve. The parameter t must be restricted to a certain interval over which the functions f and g are defined.
The parameter can have positive and negative values. Usually a plane curve is
drawn as the value of the parameter increases. The direction of the plane curve
as the parameter increases is called the orientation of the curve. The
orientation of a plane curve can be represented by arrows drawn along the curve.
Examine the graph below. It is defined by the parametric equations x = cos(t), y = sin(t), 0≤t < 2Π.
, Π, and
. Note the orientation of the
curve: counterclockwise.
The unit circle is an example of a curve that can be easily drawn using parametric equations. One of the advantages of parametric equations is that they can be used to graph curves that are not functions, like the unit circle.
Another advantage of parametric equations is that the parameter can be used to represent something useful and therefore provide us with additional information about the graph. Often a plane curve is used to trace the motion of an object over a certain interval of time. Let's say that the position of a particle is given by the equations from above, x = cos(t), y = sin(t), 0 < t≤2Π, where t is time in seconds. The initial position of the particle (when t = 0)is (cos(0), sin(0)) = (1, 0). By plugging in the number of seconds for t, the position of the particle can be found at any time between 0 and 2Π seconds. Information like this could not be found if all that was known was the rectangular equation for the path of the particle, x2 + y2 = 1.
It is useful to be able to convert between rectangular equations and parametric equations. Converting from rectangular to parametric can be complicated, and requires some creativity. Here we'll discuss how to convert from parametric to rectangular equations.
The process for converting parametric equations to a rectangular equation is commonly called eliminating the parameter. First, you must solve for the parameter in one equation. Then, substitute the rectangular expression for the parameter in the other equation, and simplify. Study the example below, in which the parametric equations x = 2t - 4, y = t + 1, - âàû < t < âàû are converted into a rectangular equation.
parametric
x = 2t - 4, y = t + 1 |
t = ![]() |
y = ![]() |
y = ![]() |
One thing to note about parametric equations is that more than one pair of parametric equations can represent the same plane curve. Sometimes the orientation is different, and sometimes the starting point is different, but the graph may remain the same. When the parameter is time, different parametric equations can be used to trace the same curve at different speeds, for example.
Please wait while we process your payment