Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
Get instant, ad-free access to our grade-boosting study tools with a 7-day free trial!
Learn more
Create Account
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Log into your PLUS account
Create Account
Select Plan
Payment Info
Start 7-Day Free Trial!
Select Your Plan
Monthly
$5.99
/month + taxAnnual
$29.99
/year + taxAnnual
2-49 accounts
$22.49/year + tax
50-99 accounts
$20.99/year + tax
Select Quantity
Price per seat
$29.99 $--.--
Subtotal
$-.--
Want 100 or more? Request a customized plan
Monthly
$5.99
/month + taxYou could save over 50%
by choosing an Annual Plan!
Annual
$29.99
/year + taxSAVE OVER 50%
compared to the monthly price!
| Focused-studying | ||
| PLUS Study Tools | ||
| AP® Test Prep PLUS | ||
| My PLUS Activity | ||
Annual
$22.49/month + tax
Save 25%
on 2-49 accounts
Annual
$20.99/month + tax
Save 30%
on 50-99 accounts
| Focused-studying | ||
| PLUS Study Tools | ||
| AP® Test Prep PLUS | ||
| My PLUS Activity | ||
Testimonials from SparkNotes Customers
No Fear provides access to Shakespeare for students who normally couldn’t (or wouldn’t) read his plays. It’s also a very useful tool when trying to explain Shakespeare’s wordplay!
Erika M.
I tutor high school students in a variety of subjects. Having access to the literature translations helps me to stay informed about the various assignments. Your summaries and translations are invaluable.
Kathy B.
Teaching Shakespeare to today's generation can be challenging. No Fear helps a ton with understanding the crux of the text.
Kay H.
Testimonials from SparkNotes Customers
No Fear provides access to Shakespeare for students who normally couldn’t (or wouldn’t) read his plays. It’s also a very useful tool when trying to explain Shakespeare’s wordplay!
Erika M.
I tutor high school students in a variety of subjects. Having access to the literature translations helps me to stay informed about the various assignments. Your summaries and translations are invaluable.
Kathy B.
Teaching Shakespeare to today's generation can be challenging. No Fear helps a ton with understanding the crux of the text.
Kay H.
Create Account
Select Plan
Payment Info
Start 7-Day Free Trial!
Payment Information
You will only be charged after the completion of the 7-day free trial.
If you cancel your account before the free trial is over, you will not be charged.
You will only be charged after the completion of the 7-day free trial. If you cancel your account before the free trial is over, you will not be charged.
Order Summary
Annual
7-day Free Trial
SparkNotes PLUS
$29.99 / year
Annual
Quantity
51
PLUS Group Discount
$29.99 $29.99 / seat
Tax
$0.00
SPARK25
-$1.25
25% Off
Total billed on Nov 7, 2024 after 7-day free trail
$29.99
Total billed
$0.00
Due Today
$0.00
Promo code
This is not a valid promo code
Card Details
By placing your order you agree to our terms of service and privacy policy.
By saving your payment information you allow SparkNotes to charge you for future payments in accordance with their terms.
Powered by stripe
Legal
Google pay.......
Thank You!
Your group members can use the joining link below to redeem their membership. They will be prompted to log into an existing account or to create a new account. All members under 16 will be required to obtain a parent's consent sent via link in an email.Your Child’s Free Trial Starts Now!
Thank you for completing the sign-up process. Your child’s SparkNotes PLUS login credentials are [email] and the associated password. If you have any questions, please visit our help center.Your Free Trial Starts Now!
Please wait while we process your payment
Sorry, you must enter a valid email address
By entering an email, you agree to our privacy policy.
Please wait while we process your payment
Sorry, you must enter a valid email address
By entering an email, you agree to our privacy policy.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Month
Day
Year
Please read our terms and privacy policy
Please wait while we process your payment
Vectors
One way to represent motion between points in the coordinate plane is with vectors. A vector is essentially a line segment in a specific position, with both length and direction, designated by an arrow on its end. The figures below are vectors.

A vector can be named by a single letter, such as v. The vector v is symbolized
by a letter v with an arrow above it, like this:
. A vector
is determined by two coordinates, just like a point--one for its magnitude in
the x direction, and one for its magnitude in the y direction. The magnitude of
a vector in the x-direction is called the horizontal, or x-component of the
vector. The magnitude of a vector in the y-direction is called the vertical, or
$y$-component of the vector. A vector
with coordinates
(3,4) and origin at the origin of the coordinate plane looks like this:

A vector has length and direction, that is all. Two vectors with the same
length and direction are the same vector. They may have origins at different
points, but they are still equal. The length of a vector is formally called its
magnitude. Given the coordinates of a vector (x, y), its magnitude is
. This formula is drawn from the **Pythagorean Theorem*
{math/geometry2/specialtriangles}*. The direction of a vector is only fixed
when that vector is viewed in the coordinate plane. Then, using techniques
we'll learn shortly, the direction of a vector can be calculated. Outside the
coordinate plane, directions only exist relative to one another, so a single
vector cannot have a specific direction.
Vectors can be added and subtracted to one another, and multiplied and divided
by scalars (number with magnitude but no direction). When two vectors are added
or subtracted, the x-component of one vector is added or subtracted to the
x-component of the other, and the same is done with the y-components of the
vectors. For example, if
and
, then
.
When a vector is multiplied or divided by a scalar, the scalar (any
real number) is simply distributed through to both coordinates of the vector.
Hence, using the vectors defined above, 2
and
. In any case, the sum, difference, product, or
quotient is still a vector.
A vector whose origin is the origin of the coordinate plane ends at the point with the same coordinates as the vector. Because vectors have a fixed magnitude, they always determine two points, the origin of the vector and the endpoint. Vectors are useful mathematical tools for modeling motion and symbolizing directed line segments.
One more note is important to make in this lesson: vectors are not rays. They are symbolized the same way--a line segment with an arrow on one end--but they are very different things. Vectors have a specified length, rays have infinite length. From this point on, whenever a line semgent is drawn with an arrow on one end, assume that it is a ray. If such a figure is a vector, it will be noted.
Please wait while we process your payment