Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
Get instant, ad-free access to our grade-boosting study tools with a 7-day free trial!
Learn more
Create Account
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Log into your PLUS account
Create Account
Select Plan
Payment Info
Start 7-Day Free Trial!
Select Your Plan
Monthly
$5.99
/month + taxAnnual
$29.99
/year + taxAnnual
2-49 accounts
$22.49/year + tax
50-99 accounts
$20.99/year + tax
Select Quantity
Price per seat
$29.99 $--.--
Subtotal
$-.--
Want 100 or more? Request a customized plan
Monthly
$5.99
/month + taxYou could save over 50%
by choosing an Annual Plan!
Annual
$29.99
/year + taxSAVE OVER 50%
compared to the monthly price!
| Focused-studying | ||
| PLUS Study Tools | ||
| AP® Test Prep PLUS | ||
| My PLUS Activity | ||
Annual
$22.49/month + tax
Save 25%
on 2-49 accounts
Annual
$20.99/month + tax
Save 30%
on 50-99 accounts
| Focused-studying | ||
| PLUS Study Tools | ||
| AP® Test Prep PLUS | ||
| My PLUS Activity | ||
Testimonials from SparkNotes Customers
No Fear provides access to Shakespeare for students who normally couldn’t (or wouldn’t) read his plays. It’s also a very useful tool when trying to explain Shakespeare’s wordplay!
Erika M.
I tutor high school students in a variety of subjects. Having access to the literature translations helps me to stay informed about the various assignments. Your summaries and translations are invaluable.
Kathy B.
Teaching Shakespeare to today's generation can be challenging. No Fear helps a ton with understanding the crux of the text.
Kay H.
Testimonials from SparkNotes Customers
No Fear provides access to Shakespeare for students who normally couldn’t (or wouldn’t) read his plays. It’s also a very useful tool when trying to explain Shakespeare’s wordplay!
Erika M.
I tutor high school students in a variety of subjects. Having access to the literature translations helps me to stay informed about the various assignments. Your summaries and translations are invaluable.
Kathy B.
Teaching Shakespeare to today's generation can be challenging. No Fear helps a ton with understanding the crux of the text.
Kay H.
Create Account
Select Plan
Payment Info
Start 7-Day Free Trial!
Payment Information
You will only be charged after the completion of the 7-day free trial.
If you cancel your account before the free trial is over, you will not be charged.
You will only be charged after the completion of the 7-day free trial. If you cancel your account before the free trial is over, you will not be charged.
Order Summary
Annual
7-day Free Trial
SparkNotes PLUS
$29.99 / year
Annual
Quantity
51
PLUS Group Discount
$29.99 $29.99 / seat
Tax
$0.00
SPARK25
-$1.25
25% Off
Total billed on Nov 7, 2024 after 7-day free trail
$29.99
Total billed
$0.00
Due Today
$0.00
Promo code
This is not a valid promo code
Card Details
By placing your order you agree to our terms of service and privacy policy.
By saving your payment information you allow SparkNotes to charge you for future payments in accordance with their terms.
Powered by stripe
Legal
Google pay.......
Thank You!
Your group members can use the joining link below to redeem their membership. They will be prompted to log into an existing account or to create a new account. All members under 16 will be required to obtain a parent's consent sent via link in an email.Your Child’s Free Trial Starts Now!
Thank you for completing the sign-up process. Your child’s SparkNotes PLUS login credentials are [email] and the associated password. If you have any questions, please visit our help center.Your Free Trial Starts Now!
Please wait while we process your payment
Sorry, you must enter a valid email address
By entering an email, you agree to our privacy policy.
Please wait while we process your payment
Sorry, you must enter a valid email address
By entering an email, you agree to our privacy policy.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Month
Day
Year
Please read our terms and privacy policy
Please wait while we process your payment
Reference Angles
Calculate sin(
) and sin(
) (using a calculator, for now).
The answer to both is
. That is, the y-coordinate
of a point on the terminal side of these
angles is equal to one-half the distance between
the point and the origin. There are many cases in which
more than one angle has the same value for its sine, cosine, or some other
trigonometric function. This phenomenon exists because all trigonometric functions
are periodic. A periodic function is a function whose values (outputs) repeat
in regular intervals. Symbolically, a periodic function looks like this: f (x + c) = f (x),
for some constant c. The constant c is called the period--it is the interval at which
the function has a non-repeating pattern before repeating itself again. When we graph
the trigonometric functions, we'll see that the period of sine,
cosine, cosecant, and secant are 2Π, and the period of tangent and
cotangent is Π. For now, using reference angles, we'll learn how to calculate
the value of a trigonometric function of any angle just by knowing the value of the
trigonometric functions from 0 to
.
The use of reference angles is a way to simplify the calculation of the values of trigonometric functions at various angles. With a calculator, it is easy to calculate the value of any function at any angle. As you get more familiar with trigonometry, though, you'll memorize the values of a few simple trigonometric equations, and with reference angles, you can extend this knowledge of a few equations to many more.
A reference angle for a given angle in standard position
is the positive acute angle formed by the $x$-axis and the
terminal side of the given angle. Reference angles, by definition, always have a
measure between 0 and
. Due to the periodic nature of the trigonometric
functions, the value of a trigonometric function at a given angle is always the same as
its value at that angle's reference angle, except when there is a variation in sign.
Because we know the signs of the functions in different quadrants,
we can simplify the calculation of the value of a function at any angle to the value of
the function at the reference angle for that angle.

For example, sin(
) = ±sin(
). We know this because the
angle
is the reference angle for
. Because we know
that the sine function is negative in the third quadrant, we know the whole answer:
sin(
) = - sin(
). Shortly, we will become very familiar
with expressions like sin(
), and, without much thinking, we'll know
that the answer is
. Herein lies the usefulness of reference
angles: we only need to become familiar with the values of the functions from 0
to
and the signs of the functions in each quadrant to be able
to calculate the value of a function at any angle.
Below is a chart that will help in the easy calculation of reference angles. For angles in the first quadrant, the reference angle β is equal to the given angle θ. For angles in other quadrants, reference angles are calculated this way:

For angles greater than 2Π radians, simply subtract
2Π from them, and then use the chart above to calculate the accompanying
reference angle. When you become familiar with the values of certain
trigonometric functions at certain common angles, like
and
, you will be capable of using reference angles to figure out
the values of these functions at an infinite number of other angles.
Please wait while we process your payment