Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews October 2, 2023 September 25, 2023
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Another quite common force is frictional force. Like the normal force, it is caused by direct contact between surfaces. However, while the normal force is always perpendicular to the surface, the frictional force is always parallel to the surface. To fully describe the cause of friction requires knowledge beyond the scope of classical mechanics. For our purposes, it is enough to know that friction is caused by electrical interactions between the two surfaces on a microscopic level. These interactions always serve to resist motion, and differ in nature according to whether or not the surfaces are moving relative to each other. We shall examine each of these cases separately.
Consider the example of two blocks, one resting on top of the other. If friction is present, a certain minimum horizontal force is required to move the top block. If a horizontal force less than this minimum force is applied to the top block, a force must act to counter the applied force and keep the block at rest. This force is called the static frictional force, and it varies according to the amount of force applied to the block. If no force is applied, clearly there is no static frictional force. As more force is applied, the static frictional force increases until it reaches a certain maximum value; once the horizontal force exceeds the maximum frictional force the block begins to move. The frictional force, defined as Fsmax, is conveniently proportional to the normal force between the two surfaces:
Fsmax = μsFN |
This equation for maximum static frictional force contains a lot of information, and a few remarks must be made for clarification.
Though it is rather surprising that frictional force and normal force are related in such a simple manner, physical intuition tells us that they should be directly related. Consider again a block of wood on a concrete platform. The normal force is given by the weight of the wood. If an additional downward force is applied to the wood (producing a greater normal force) the surfaces are actually in closer contact than they were before, and the resulting electrical interactions are stronger. Thus, intuitively, a greater normal force yields a greater frictional force. Our intuition agrees with the equation.
Once a force is applied to an object that exceeds Fsmax, the object begins to move, and static frictional forces no longer apply. The moving object does still experience a frictional force, but of a different nature. We call this force the kinetic frictional force. The kinetic frictional force always counteracts the motion of the object, and is independent of speed. No matter the speed of the object (as long as v≤ 0) it experiences the same frictional force. Also, for the same reasons as explained with static friction, the kinetic frictional force is proportional to the normal force:
Fk = μkFN |
This equation is of the same form as that for maximum static frictional force, and defines the coefficient of kinetic friction, μk, which has the same properties as μs, but a different value. μk is a property of the interacting materials, and, like μs, is independent of orientation of the objects. The only significant difference between the two friction equations is that the first measures the friction between two stationary objects and its value is dependent on the force applied to one, while second measures a frictional force that only exists when one of the objects is moving and which is not depend on the force applied to the block. Finally, when comparing static with kinetic friction, it must be noted that μs is always greater in value than μk. Simply stated, this means that it takes less force to keep a block moving than to start its motion.
These two types of friction, like the normal force, arise whenever two objects are in direct contact. Often both kinetic and static friction apply to a given situation, as an object might start at rest (when static friction applies) then begin to move (when kinetic friction applies). Though friction applies in so many situations, it is often ignored in order to simplify the situation. Unless friction is explicitly stated to be present in a given problem, in can be ignored. That said, friction remains one of the most widely used applications of Newton's Laws.
Please wait while we process your payment