Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
Get instant, ad-free access to our grade-boosting study tools with a 7-day free trial!
Learn more
Create Account
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Log into your PLUS account
Create Account
Select Plan
Payment Info
Start 7-Day Free Trial!
Select Your Plan
Monthly
$5.99
/month + taxAnnual
$29.99
/year + taxAnnual
2-49 accounts
$22.49/year + tax
50-99 accounts
$20.99/year + tax
Select Quantity
Price per seat
$29.99 $--.--
Subtotal
$-.--
Want 100 or more? Request a customized plan
Monthly
$5.99
/month + taxYou could save over 50%
by choosing an Annual Plan!
Annual
$29.99
/year + taxSAVE OVER 50%
compared to the monthly price!
| Focused-studying | ||
| PLUS Study Tools | ||
| AP® Test Prep PLUS | ||
| My PLUS Activity | ||
Annual
$22.49/month + tax
Save 25%
on 2-49 accounts
Annual
$20.99/month + tax
Save 30%
on 50-99 accounts
| Focused-studying | ||
| PLUS Study Tools | ||
| AP® Test Prep PLUS | ||
| My PLUS Activity | ||
Testimonials from SparkNotes Customers
No Fear provides access to Shakespeare for students who normally couldn’t (or wouldn’t) read his plays. It’s also a very useful tool when trying to explain Shakespeare’s wordplay!
Erika M.
I tutor high school students in a variety of subjects. Having access to the literature translations helps me to stay informed about the various assignments. Your summaries and translations are invaluable.
Kathy B.
Teaching Shakespeare to today's generation can be challenging. No Fear helps a ton with understanding the crux of the text.
Kay H.
Testimonials from SparkNotes Customers
No Fear provides access to Shakespeare for students who normally couldn’t (or wouldn’t) read his plays. It’s also a very useful tool when trying to explain Shakespeare’s wordplay!
Erika M.
I tutor high school students in a variety of subjects. Having access to the literature translations helps me to stay informed about the various assignments. Your summaries and translations are invaluable.
Kathy B.
Teaching Shakespeare to today's generation can be challenging. No Fear helps a ton with understanding the crux of the text.
Kay H.
Create Account
Select Plan
Payment Info
Start 7-Day Free Trial!
Payment Information
You will only be charged after the completion of the 7-day free trial.
If you cancel your account before the free trial is over, you will not be charged.
You will only be charged after the completion of the 7-day free trial. If you cancel your account before the free trial is over, you will not be charged.
Order Summary
Annual
7-day Free Trial
SparkNotes PLUS
$29.99 / year
Annual
Quantity
51
PLUS Group Discount
$29.99 $29.99 / seat
Tax
$0.00
SPARK25
-$1.25
25% Off
Total billed on Nov 7, 2024 after 7-day free trail
$29.99
Total billed
$0.00
Due Today
$0.00
Promo code
This is not a valid promo code
Card Details
By placing your order you agree to our terms of service and privacy policy.
By saving your payment information you allow SparkNotes to charge you for future payments in accordance with their terms.
Powered by stripe
Legal
Google pay.......
Thank You!
Your group members can use the joining link below to redeem their membership. They will be prompted to log into an existing account or to create a new account. All members under 16 will be required to obtain a parent's consent sent via link in an email.Your Child’s Free Trial Starts Now!
Thank you for completing the sign-up process. Your child’s SparkNotes PLUS login credentials are [email] and the associated password. If you have any questions, please visit our help center.Your Free Trial Starts Now!
Please wait while we process your payment
Sorry, you must enter a valid email address
By entering an email, you agree to our privacy policy.
Please wait while we process your payment
Sorry, you must enter a valid email address
By entering an email, you agree to our privacy policy.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Month
Day
Year
Please read our terms and privacy policy
Please wait while we process your payment
Problems 2
Problem :
What is the impulse of a force of 10 N acting on a ball for 2 seconds?
The definition of impulse is force over a time, so we have to do a simple calculation: J = FΔt = 10(2) = 20 Newton-seconds.
Problem :
Consider the last problem. The ball weighs 2 kg and is initially at rest. What is the velocity of the ball after the force has acted on it?
Recall that an impulse causes a change in linear momentum. Because the particle starts with zero velocity, it initially has a zero momentum. Thus:
| J | = | mvf - mvo | |
| 20 | = | 2vf | |
| vf | = | 10 |
Problem :
A particle has linear momentum of 10 kg-m/s, and a kinetic energy of 25 J. What is the mass of the particle?
Recall that kinetic energy and momentum are related according to the following equations:
K =
mv2 and p = mv. Since v = p/m then K =
.
Solving for m we see that m =
=
= 2 kg. From
our knowledge of energy and momentum we can state the mass of the ball
from these two quantities. This method of finding the mass of a particle
is commonly used in particle physics, when particles decay too quickly to be
massed, but when their momentum and energy can be measured.
Problem :
A 2 kg bouncy ball is dropped from a height of 10 meters, hits the floor and returns to its original height. What was the change in momentum of the ball upon impact with the floor? What was the impulse provided by the floor?
To find the change in momentum of the ball we must find first the velocity
of the ball just before it hit the ground. To do so, we must rely on
the conservation of mechanical energy. The ball was dropped from a height
of 10 meters, and so had a potential energy of mgh = 10mg. This energy is
converted completely to kinetic energy by the time the ball hits the
floor. Thus:
mv2 = 10mg. Solving for v, v =
= 14 m/s. Thus
the ball hits the ground with a velocity of 14 m/s.
The same argument can be made to find the speed with which the ball bounced back up. When the ball is at ground level, all of the energy of the system is kinetic energy. As the ball bounces back up, this energy gets converted to gravitational potential energy. If the ball reaches the same height it was dropped from, then, we can deduce that the ball leaves the ground with the same speed with which it hit the ground, though in a different direction. Thus the change in momentum, pf - po = 14(2) - (- 14)(2) = 56. The ball's momentum changes by 56 kg-m/s.
We are next asked to find the impulse provided by the floor. By the impulse-momentum theorem, a given impulse causes a change in momentum. Since we have already calculated our change in momentum, we already know our impulse. It is simply 56 kg-m/s.
Problem :
A ball of 2 kg is thrown straight up into the air with an initial velocity of 10 m/s. Using the impulse-momentum theorem, calculate the time of flight of the ball.
Once the ball is thrown up, it is acted on by a constant force mg. This force causes a change in momentum until the ball has reversed directions, and lands with the velocity of 10 m/s. Thus we can calculate the total change in momentum: Δp = mvf - mvo = 2(10) - 2(- 10) = 40. Now we turn to the impulse-momentum theorem to find the time of flight:
| FΔt | = | Δp | |
| mgΔt | = | 40 |
Please wait while we process your payment