Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews May 8, 2025 May 1, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Problems 2
Problem :
What is the impulse of a force of 10 N acting on a ball for 2 seconds?
The definition of impulse is force over a time, so we have to do a simple calculation: J = FΔt = 10(2) = 20 Newton-seconds.
Problem :
Consider the last problem. The ball weighs 2 kg and is initially at rest. What is the velocity of the ball after the force has acted on it?
Recall that an impulse causes a change in linear momentum. Because the particle starts with zero velocity, it initially has a zero momentum. Thus:
J | = | mvf - mvo | |
20 | = | 2vf | |
vf | = | 10 |
Problem :
A particle has linear momentum of 10 kg-m/s, and a kinetic energy of 25 J. What is the mass of the particle?
Recall that kinetic energy and momentum are related according to the following equations:
K = mv2 and p = mv. Since v = p/m then K =
.
Solving for m we see that m =
=
= 2 kg. From
our knowledge of energy and momentum we can state the mass of the ball
from these two quantities. This method of finding the mass of a particle
is commonly used in particle physics, when particles decay too quickly to be
massed, but when their momentum and energy can be measured.
Problem :
A 2 kg bouncy ball is dropped from a height of 10 meters, hits the floor and returns to its original height. What was the change in momentum of the ball upon impact with the floor? What was the impulse provided by the floor?
To find the change in momentum of the ball we must find first the velocity
of the ball just before it hit the ground. To do so, we must rely on
the conservation of mechanical energy. The ball was dropped from a height
of 10 meters, and so had a potential energy of mgh = 10mg. This energy is
converted completely to kinetic energy by the time the ball hits the
floor. Thus:mv2 = 10mg. Solving for v, v =
= 14 m/s. Thus
the ball hits the ground with a velocity of 14 m/s.
The same argument can be made to find the speed with which the ball bounced back up. When the ball is at ground level, all of the energy of the system is kinetic energy. As the ball bounces back up, this energy gets converted to gravitational potential energy. If the ball reaches the same height it was dropped from, then, we can deduce that the ball leaves the ground with the same speed with which it hit the ground, though in a different direction. Thus the change in momentum, pf - po = 14(2) - (- 14)(2) = 56. The ball's momentum changes by 56 kg-m/s.
We are next asked to find the impulse provided by the floor. By the impulse-momentum theorem, a given impulse causes a change in momentum. Since we have already calculated our change in momentum, we already know our impulse. It is simply 56 kg-m/s.
Problem :
A ball of 2 kg is thrown straight up into the air with an initial velocity of 10 m/s. Using the impulse-momentum theorem, calculate the time of flight of the ball.
Once the ball is thrown up, it is acted on by a constant force mg. This force causes a change in momentum until the ball has reversed directions, and lands with the velocity of 10 m/s. Thus we can calculate the total change in momentum: Δp = mvf - mvo = 2(10) - 2(- 10) = 40. Now we turn to the impulse-momentum theorem to find the time of flight:
FΔt | = | Δp | |
mgΔt | = | 40 |
Please wait while we process your payment