Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews May 8, 2025 May 1, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Impulse and Momentum
Having studied the macroscopic movement of a system of particles, we now turn to the microscopic movement: the movement of individual particles in the system. This movement is determined by forces applied to each particle by the other particles. We shall examine how these forces change the motion of the particles, and generate our second great law of conservation, the conservation of linear momentum.
Often in systems of particles, two particles interact by applying a force to each other over a finite period of time, as in a collision. The physics of collisions will be further examined in the next SparkNote as an extension of our conservation law, but for now we will look at the general case of forces acting over a period of time. We shall define this concept, force applied over a time period, as impulse. Impulse can be defined mathematically, and is denoted by J:
J = FΔt |
Given the situation of hitting a ball, can we predict the resultant motion of the ball? Let us analyze our equation for impulse more closely, and convert it to a kinematic expression. We first substitute F = ma into our equation:
Recall that when finding that work caused a change in the quantity
mv2 we defined this as kinetic energy. Similarly, we define
momentum according to our equation for an impulse.
From our equation relating impulse and velocity, it is logical to define the momentum of a single particle, denoted by the vector p, as such:
p = mv |
The first equation, involving calculus, reverts back to Newton's Laws. If we take a time derivative of our momentum expression we get the following equation:
![]() ![]() |
Please wait while we process your payment