Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews June 17, 2023 June 10, 2023
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Light has long captured the fascination of humankind and although we take phenomena such as reflection, refraction, diffraction and interference for granted, it is not hard to see why they posed perplexing problems throughout most of history. Why should light bend upon entering water? Why does light spread out after passing through a narrow gap? How does light travel to us from the sun, through the void of space? These sorts of questions have ensured that optics has a long and engaging history; mirrors were known to the ancients, eyeglasses were known by the thirteenth century, and, of course, the telescope was invented by Galileo around 1608.
The law of refraction was discovered by Willebrord Snell in 1621 and the phenomenon of diffraction was observed by both Francesco Maria Grimaldi and Robert Hooke by the mid-1600s. Sir Isaac Newton made great contributions to optics, proposing that 'white light' was a combination of all colors, and formulating a particle, or corpuscular, theory of light. At roughly the same time (the latter half of the seventeenth century), the Dutch physicist Christian Huygens proposed a powerful wave theory of light. As we shall discover, most of the history of optics is dominated by the debate over the nature of light: is light a particle or a wave, or is it something in between (a wavicle?)?
Another important figure in the history of optics is Thomas Young, an Englishman who revived the wave
theory at the beginning of the nineteenth century by adding to it the principle of superposition.
The French scientist Augustin Jean Fresnel, also an advocate of the wave theory, proposed a mechanistic
description of light on the basis of it being a transverse oscillation through the
ether, rather than a longitudinal one as had previously been assumed. The
corpuscular theory seemed in very bad shape indeed. By 1845 Michael Faraday had performed several
experiments showing that the plane of polarization could be altered by magnetic fields. This
ultimately led to James Clerk Maxwell's brilliant unification of optics and electromagnetism, when his wave
equations predicted that the speed of light should be 1/, which was remarkably
close to the experimental value. Light, then, was an electromagnetic disturbance propagating through the
ether.
As a wave, however, light must have a medium through which to propagate. Towards the end of the nineteenth century this medium, called the ether, became increasingly problematic; experiments by Michelson and Morley in particular could detect no motion of the ether relative to the earth. Such considerations led to Einstein's theory of special relativity and to the discarding of the idea of the ether altogether. Moreover, as the twentieth century progressed, quantum mechanics showed that all particles have a wavelike property; the distinction between waves and particles became less and less clear.
In this guide we will treat light usually as a wave, but sometimes as a particle, and as a general rule it is both or either. First, we will examine light as a wave, the relationship between light and electromagnetism, and gain some insight into how light interacts with matter. In the second topic, we will apply the laws of reflection and refraction to geometric optics. Finally, we will consider the important phenomena of interference, diffraction, and polarization.
Please wait while we process your payment