Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews June 6, 2023 May 30, 2023
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Up to this point we have only examined the special case in which the net force on an oscillating particle is always proportional to the displacement of the particle. Oftentimes, however, there are other forces in addition to this restoring force, which create more complex oscillations. Though much of the study of this motion lies in the realm of differential equations, we will give at least an introductory treatment to the topic.
In most real physical situations, an oscillation cannot go on
indefinitely.
Forces such as friction and air resistance eventually dissipate energy
and
decrease both the speed and amplitude of oscillation until the system is
at rest
at its equilibrium point. The most common dissipative force encountered
is a
damping force, which is proportional to the velocity of the object,
and
always acts in a direction opposite the velocity. In the case of the
pendulum,
air resistance always works against the motion of the pendulum,
counteracting
the gravitational force, shown below.
We denote the force as Fd, and relate it to the velocity of the object: Fd = - bv, where b is a positive constant of proportionality, dependent on the system. Recall that we generated the differential equation for simple harmonic motion using Newton's Second Law:
- kx - b![]() ![]() |
x = xme-bt/2mcos(σâ≤t) |
Where
σâ≤ = ![]() |
The study of damped harmonic motion could be a chapter in and of itself; we have simply given an overview of the concepts that give rise to this complex motion.
The second example of complex harmonic motion we will examine is that of
forced
oscillations and resonance. Up to this point we have only looked at
natural
oscillations: cases in which a body is displaced and then released,
subject only
to natural restoring and frictional forces. In many cases, however, an
independent force acts on the system to drive the oscillation. Consider
a
mass
spring system in which the mass oscillates on the spring (as usual) but
the wall
to which the spring is attached oscillates at a different frequency, as
shown
below:
Usually the frequency of the external force (in this case the wall) differs from the frequency of the natural oscillation of the system. As such, the motion is quite complex, and can sometimes be chaotic. Considering the complexity, we will omit the equations governing this motion, and simply examine the special case of resonance in forced oscillations.
Please wait while we process your payment