Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
Get instant, ad-free access to our grade-boosting study tools with a 7-day free trial!
Learn more
Create Account
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Log into your PLUS account
Create Account
Select Plan
Payment Info
Start 7-Day Free Trial!
Select Your Plan
Monthly
$5.99
/month + taxAnnual
$29.99
/year + taxAnnual
2-49 accounts
$22.49/year + tax
50-99 accounts
$20.99/year + tax
Select Quantity
Price per seat
$29.99 $--.--
Subtotal
$-.--
Want 100 or more? Request a customized plan
Monthly
$5.99
/month + taxYou could save over 50%
by choosing an Annual Plan!
Annual
$29.99
/year + taxSAVE OVER 50%
compared to the monthly price!
| Focused-studying | ||
| PLUS Study Tools | ||
| AP® Test Prep PLUS | ||
| My PLUS Activity | ||
Annual
$22.49/month + tax
Save 25%
on 2-49 accounts
Annual
$20.99/month + tax
Save 30%
on 50-99 accounts
| Focused-studying | ||
| PLUS Study Tools | ||
| AP® Test Prep PLUS | ||
| My PLUS Activity | ||
Testimonials from SparkNotes Customers
No Fear provides access to Shakespeare for students who normally couldn’t (or wouldn’t) read his plays. It’s also a very useful tool when trying to explain Shakespeare’s wordplay!
Erika M.
I tutor high school students in a variety of subjects. Having access to the literature translations helps me to stay informed about the various assignments. Your summaries and translations are invaluable.
Kathy B.
Teaching Shakespeare to today's generation can be challenging. No Fear helps a ton with understanding the crux of the text.
Kay H.
Testimonials from SparkNotes Customers
No Fear provides access to Shakespeare for students who normally couldn’t (or wouldn’t) read his plays. It’s also a very useful tool when trying to explain Shakespeare’s wordplay!
Erika M.
I tutor high school students in a variety of subjects. Having access to the literature translations helps me to stay informed about the various assignments. Your summaries and translations are invaluable.
Kathy B.
Teaching Shakespeare to today's generation can be challenging. No Fear helps a ton with understanding the crux of the text.
Kay H.
Create Account
Select Plan
Payment Info
Start 7-Day Free Trial!
Payment Information
You will only be charged after the completion of the 7-day free trial.
If you cancel your account before the free trial is over, you will not be charged.
You will only be charged after the completion of the 7-day free trial. If you cancel your account before the free trial is over, you will not be charged.
Order Summary
Annual
7-day Free Trial
SparkNotes PLUS
$29.99 / year
Annual
Quantity
51
PLUS Group Discount
$29.99 $29.99 / seat
Tax
$0.00
SPARK25
-$1.25
25% Off
Total billed on Nov 7, 2024 after 7-day free trail
$29.99
Total billed
$0.00
Due Today
$0.00
Promo code
This is not a valid promo code
Card Details
By placing your order you agree to our terms of service and privacy policy.
By saving your payment information you allow SparkNotes to charge you for future payments in accordance with their terms.
Powered by stripe
Legal
Google pay.......
Thank You!
Your group members can use the joining link below to redeem their membership. They will be prompted to log into an existing account or to create a new account. All members under 16 will be required to obtain a parent's consent sent via link in an email.Your Child’s Free Trial Starts Now!
Thank you for completing the sign-up process. Your child’s SparkNotes PLUS login credentials are [email] and the associated password. If you have any questions, please visit our help center.Your Free Trial Starts Now!
Please wait while we process your payment
Sorry, you must enter a valid email address
By entering an email, you agree to our privacy policy.
Please wait while we process your payment
Sorry, you must enter a valid email address
By entering an email, you agree to our privacy policy.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Month
Day
Year
Please read our terms and privacy policy
Please wait while we process your payment
Problems on the Relativistic Doppler Effect
Problem : A train is moving directly towards you at 2×108 m/s. The (monochromatic) light on the front of the train has a wavelength of 250 nanometers in the frame of the train. What wavelength do you observe?
Using c = fλ we find the frequency of the emitted light to be 1.2×1015 Hz. The observed frequency is given by:f = f' = 1.2×1015 = ×1.2×1015 = 2.68×1015 |
Problem : Light that is assumed to be from the 22.5 cm microwave Hydrogen line is measured at a frequency of 1.2×103 MHz. How fast is the galaxy from which this light was emitted receding from the earth?
This is the famous 'redshift' effect. We know that the ratio
=
.
Because f = c/λ this must be equal to the ratio
, where the unprimed
symbols denoted the frequencies and wavelengths measured on earth. Thus
=
, where c/(1.2×109) = 25. Thus:
1.23 = âá1.23 - 1.23v/c = 1 + v/câá0.23 = 2.23v/câáv = 0.105c |
Problem :
Consider two ultra-high-speed drag racers. One drag racer has a red stripe on the side and overtakes the
other drag racer at a relative speed of
c/2. If the red stripe has wavelength 635 nanometers, what
color is the stripe as observed by the other drag racer (that is, what is the wavelength) at the exact instant
the overtaking occurs as measured in the frame of the racer-being-overtaken?
Problem : In the previous problem, what is the observed color of the stripe at the instant the overtaken drag racer observes herself being overtaken?
This corresponds to the other scenario where the faster racer has already passed but the slower one is now observing the overtaking. In this case f = f'/γ so λ = γλ' = 2×635 = 1270 nanometers (we have the same γ as calculated in the previous problem). This is in fact well out of the visible range (off the infra-red end).Problem : Explain (qualitatively if you like) why an observer moving in a circle around a stationary source observes the same Doppler effect as one of the transverse cases discussed in Section 1. Which one and what is the frequency shift? Use the fact that if an inertial observer observes the clock of an accelerating object, it is only the instantaneous speed which is important in calculating the time dilation.
This is in fact equivalent to the first transverse case described in which a stationary observer observes the light from a passing source as it is directly alongside him (that is, the case where light is coming at an angle). The instantaneous speed of the circling observer is constant at v. In the frame of the source (call it F') it emits flashes every Δt' = 1/f' seconds. But the source sees the observer's time as being dilated, thus Δt' = γΔt. The observer and source remain a constant distance from one another (because of the circular motion), so there are no longitudinal effects. The flashes are observed in F (the observer's frame) at intervals ΔT = Δt'/γ = 1/(f'γ). Thus f = f'γ which is the same result as when the moving source is just passing the observer.Please wait while we process your payment