Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews May 8, 2025 May 1, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Stoichiometric Calculations
Converting from Grams to Moles
The gram formula mass of a compound (or element) can be defined as the mass of one mole of the compound. As the definition suggests, it is measured in grams/mole and is found by summing the atomic weights of every atom in the compound. Atomic weights on the periodic table are given in terms of amu (atomic mass units), but, by design, amu correspond to the gram formula mass. In other words, a mole of a 12 amu carbon atom will weigh 12 grams.
The gram formula mass can be used as a conversion factor in stoichiometric calculations through the following equation:
Moles = ![]() |
Converting between Volume of a Gas and Moles
The Ideal Gas law, discussed at length in the Sparknote on Gases, provides a handy means of converting between moles and a gas, provided you know certain qualities of that gas. The Ideal Gas Law is PV = nRT, with n representing the number of moles. If we rearrange the equation to solve for n, we get:
n = ![]() |
In those instances when a problem specifies that the calculations are to be made at STP (Standard Temperature and Pressure; P = 1 atm, T = 273 K)), the problem becomes even simpler. At STP, a mole of gas will always occupy 22.4 L of volume. If you are given a volume of a gas at STP, you can calculate the moles in that gas by calculating the volume you are given as a fraction of 22.4 L. At STP, 11.2 L of a gas will be .5 moles; 89.6 L of gas will be 4 moles.
Please wait while we process your payment