Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews May 7, 2025 April 30, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Variations Using Statements
Every statement has a negation. Usually the negation of a statement is simply the same statement with the word "not" before the verb. The negation of the statement "The ball rolls" is "The ball does not roll." By definition, the negation of a statement has the opposite truth value of the original statement. The negation of a statement a is âàüa (read "not a").
When two statements are combined with the word "and" the combination of those
statements is called the conjunction of two statements. For example, the
conjunction of the two statements "The weather is rainy" and "the ground is wet"
is the single statement, "The weather is rainy and the ground is wet." The
conjunction of two statements f and g is symbolized like this:
When two statements are joined by the word "or", their combination is called a
disjunction. The disjunction of the two statements in the previous
paragraph is "The weather is rainy or the ground is wet." The symbol for the
disjunction of statements f and g looks like this:
The most important way to combine two statements is by implication. The
implication of two statements c and d takes the form, "if f, then g." The result of implication is called a conditional statement. It is symbolized by placing an arrow between the two letters symbolizing the two statements, as so:
A conditional statement has two parts, the hypothesis and the conclusion. The hypothesis is the "if" clause of the statement. It is the condition necessary for the conclusion to occur. The conclusion is the "then" clause of the statement. The conclusion is true every time the hypothesis is true. In the statement "If Julie runs fast, then she will win the race", the hypothesis is "Julie runs fast" and the conclusion is "she will win the race."
Many different statements can be made by switching the hypothesis with the conclusion and using the negation of a statement instead of the original statement. In the next section, we'll look at some conditional statements with their parts changed in certain ways, and we'll explore the truth values of such statements.
Please wait while we process your payment