Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews May 6, 2025 April 29, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Types of Functions
In this section, we'll briefly cover a few of the most relevant and important classifications of functions.
Every function can either be classified as an even function, an odd function, or neither. Even functions have the characteristic that f (x) = f (- x). They are symmetrical with respect to the y-axis. A line segment joining the points f (x) and f (- x) will be perfectly horizontal. Odd functions have the characteristic that f (x) = - f (- x). They are symmetrical with respect to the origin. A line segment joining the points f (x) and - f (- x) always contains the origin. Many functions are neither even nor odd.
Some of the most common even functions are y = k, where k is a constant, y = x2, and y = cos(x). Some of the most common odd functions are y = x3
and y = sin(x). Some functions that are neither even nor odd include y = x - 2, y = , and y = sin(x) + 1.
Among the types of functions that we'll study extensively are polynomial, logarithmic, exponential, and trigonometric functions. Before we study those, we'll take a look at some more general types of functions.
The inverse of a function is the relation in which the roles of the
independent anddependent variable are reversed. Let f (x) = 2x. The
inverse of f, f-1 (not to be confused with a negative
exponent), equals
. It is written like this: f-1(x) =
. The
inverse of a function can be found by switching the places of x and y in the
formula of the function. The inverse of any function is a relation.
Whether the inverse is a function depends on the original function f. If f
is a one-to-one function, then its inverse is also a function. A one-to-one
function is a function for which each element of the range corresponds to
exactly one element of the domain. Therefore if a function is not a one-to-
one function, its inverse is not a function. The horizontal line test shows
us that if a horizontal line can be placed in a graph such that it intersects
the graph of a function more than once, that function is not one-to-one, and its
inverse is therefore not a function.
Inverse functions are important in solving equations. Sometimes the solution y to a function is known, but the input for that solution x is not known. In situations like these, the inverse of the function can be used to find x. We'll see more inverse functions later.
Please wait while we process your payment