Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews October 5, 2023 September 28, 2023
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
What does Wittgenstein mean when he says the propositions of logic are tautologies? What view of Frege's and Russell's is he arguing against?
Wittgenstein defines a tautology as a proposition that is true regardless of what is and what is not the case. Such a proposition, he says, has no sense and says nothing. In claiming that the propositions of logic are tautologies, he is claiming that they are empty propositions that tell us nothing about the world, but only show us something about the logical form of the world. This view of logic contradicts Frege and Russell, both of whom saw logic as a set of propositions deduced from fundamental axioms and laws of inference. According to these two philosophers, the propositions of logic describe the laws of thought: they are the most general laws there are that prescribe the form that more specific laws and thoughts must take. If logic consists of tautologies, Frege and Russell are wrong on two main points. First, logical propositions could not be laws, because laws have content and tautologies are empty. Second, the propositions of logic cannot be derived from axioms that are more fundamental than they are, since all propositions of logic (axioms included) say the same thing (i.e. nothing) and so they are all of equal value.
What is Wittgenstein's reasoning behind his claim that the world consists of fundamentally simple objects?
Wittgenstein states his reasoning most clearly at 2.0211: "If the world had no substance [if there were no objects], then whether a proposition had sense would depend on whether another proposition was true." Objects define the logical form of the world: we can use "purple" in sentences dealing with color and "two" in sentences dealing with numbers because of the logical form of these words. If it were simply a contingent fact that "purple" is a color-word, then the sentence "purple is a color" would have to be established as true before we could even know if "my car is purple" makes sense. Wittgenstein insists that the formal properties of objects cannot be contingent, since it would then be impossible to know if what we were saying makes any sense.
Why does Wittgenstein think that all propositions adhere to one general form?
Wittgenstein observes that there is one fundamental logical connective from which all propositions can be derived. This connective is called the "Sheffer stroke" and is defined as follows: "p|q" means "not p and not q." By successively applying the Sheffer stroke to propositions, we can derive any combination of truth-values we like. Wittgenstein interprets the Sheffer stroke as an operation ("N(p,q)"), and argues that the general form of the proposition is a repeated application of this operation to elementary propositions.
Please wait while we process your payment