Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews June 6, 2023 May 30, 2023
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
The general form of a proposition is "[‾p,‾ξ,N(‾ξ)]" (6). That is, every proposition is built from an initial set of elementary propositions (‾p) that are then transformed into a more complex proposition through successive applications of the negating operation, "N(‾ξ)." Thus, propositions generally are produced through successive applications of an operation.
Mathematics is also founded in the successive application of operations. If we take the expression "1/2'x" to signify the operation "1/2" applied to x, we can define a number series in terms of how many times 1/2 is applied to x. For instance, x can be defined as 1/2(^0)'x, 1/2'x as 1/2(^1)'x, 1/2'1/2'x as 1/2(^2)'x, and so on: "A number is the exponent of an operation" (6.021). The general concept of number is simply the form that all numbers share in common.
The propositions of logic are tautologies (6.1), and hence say nothing (6.11). Any attempt to give content to logical propositions is misguided. That they are true shows itself in their structure, and this structure helps us to understand the formal properties of language and the world (6.12). We cannot express anything by means of logical propositions.
Because the truths of logic are all the same (in that they all say nothing), there is no real need to "prove" them. What we call "proof" with regard to logical propositions is only necessary in complicated cases where a proposition's being a tautology is not immediately evident (6.1262). This kind of proof, however, is of an entirely different kind from the proofs by which we can establish the truth of a proposition with a sense. To prove the truth of a proposition with a sense, we must show that it follows from something else that we already know to be true. A proposition of logic, however, does not need to be deduced from other propositions. Rather, we could say, the propositions of logic give us the form of logical proof (6.1264): for example, the tautology "((p ⊃ q).p) ⊃ q" shows us that, given the non-tautologous propositions "p ⊃ q" and "p" we can prove another non-tautologous proposition, "q."
"Mathematics is a logical method" (6.2): as we have seen, numbers can be derived from the successive application of operations, this application of operations being a method of logic. The propositions of mathematics are all equations, where we say that one expression is the equivalent of another (e.g. "7 + 5 = twelve"). As Wittgenstein has already discussed, (5.53–5.5352) the sign for identity is superfluous, since the equivalence of two propositions should be evident from their form. It thus follows that the propositions of mathematics are all pseudo- propositions: they do not tell us anything, but simply express an equivalence of form. As logical pseudo-propositions, the propositions of mathematics cannot themselves express thoughts. Rather, they are abstractions that help us to infer propositions about the world (6.211).
A series is a mathematical entity that consists of a number of terms arranged in a particular order, e.g. the series of square numbers, [1, 4, 9, 16, ]. In 5.2522, Wittgenstein gives a general form for expressing a term in a particular series as "[a, x, O'x]," where "a" stands for the first term in the series, "x" stands for an arbitrarily selected term, and "O'x" stands for the term that immediately follows "x." The "O'" is the operation by which a term in the series is generated out of another. So, for instance, we could express the series of square numbers as [1, x, (sqr(x) + one)^2].
Please wait while we process your payment