Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews June 14, 2023 June 7, 2023
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Problem : Calculate the eccentricity of an ellipse with one focus at the origin and the other at $(-2k, 0)$, and semimajor axis length $3k$.
It is easiest if we draw a diagram of the situation:Problem : For an ellipse with its major axis parallel to the $x$-direction and its rightmost focus at the origin, derive the position of the other focus in terms of its eccentricity $\epsilon$ and $k$, where $k$ is defined as $k = a(1- \epsilon^2)$.
The $y$-coodinate of the other focus is the same--zero. The other focus is a distance $2\sqrt{a^2 b^2}$ in the negative x-direction, so the coordinates are $(-2\sqrt{a^2-b^2},0)$. But $\epsilon = \sqrt{1 - \frac{b^2}{a^2}}$ so we can write $-2\sqrt{a^2-b^2} = -2a\sqrt{1 \frac{b^2}{a^2}} = -2a\epsilon$. We are given that $k = a(1 - \epsilon^2)$, so $a = \frac{k}{1 - \epsilon^2}$, and $- 2a\epsilon = \frac{-2k\epsilon}{1 \epsilon^2}$. Thus the coordinate of the other focus is $(\frac{-2k\epsilon}{1\epsilon^2},0)$.Problem : The general equation for orbital motion is given by: \begin{equation} x^2 + y^2 = k^2 2k\epsilon x + \epsilon^2 x^2 \end{equation} Where the $k$ is the same $k$ as in the last problem: $k = a(1-\epsilon^2) = \frac{L^2}{GMm^2}$. Show that when $\epsilon = 0$, this reduces to an equation for a circle. What is the radius of this circle?
Clearly, when $\epsilon = 0$ the second and third terms on the right hand side go to zero, leaving: \begin{equation} x^2 + y^2 = k^2 \end{equation} This is the equation for a circle of radius $k$. Since $\epsilon$ is dimensionless and $k = a(1 - \epsilon^2)$, $k$ has the correct units of distance.Problem : Derive the formula for the area of an ellipse by integration.
The equation for an ellipse is given by: \begin{equation} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \end{equation} Solving for $y$ yields, $y = b\sqrt{1 - \frac{x^2}{a^2}}$. We can take an ellipse centered at the origin and look at the area in the first quadrant. Because of symmetry, the total area will be four times this. Thus, \begin{equation} \frac{A}{4} = b\int_0^a \sqrt{1 \frac{x^2}{a^2}} dx \end{equation} We can trigonometric substitution, $x = a\sin\theta$, then $dx = a\cos\theta d\theta$. The limits of integration can now be chosen as $\theta = 0$ and $\theta = \pi/2$. Then: \begin{equation} \frac{A}{4} = b\int_0^{\pi/2} \sqrt{1 - \sin^2\theta} a\cos\theta d\theta = ab\int_0^{\pi/2} = cos^2\theta d\theta = \frac{\pi ab}{4} \end{equation} So the total area is $A = \pi ab$.Problem : Prove that for a point on an ellipse, the sum of the distances to each foci is a constant.
We can say without loss of generality that the ellipse is centered at the origin and then the coordinates of the foci are $(\pm\sqrt{a^2 b^2},0)$. Then a point on the ellipse with coordinates $(x,y)$ will be a distance: \begin{equation} ((x-\sqrt{a^2-b^2})^2 + y^2)^{1/2} \end{equation} from one foci and distance: \begin{equation} ((x + sqrt{a^2-b^2})^2 + y^2)^{1/2} \end{equation} from the other focus. Thus the total distance is just the sum: \begin{equation} D= ((x-\sqrt{a^2-b^2})^2 + y^2)^{1/2} + ((x+\sqrt{a^2-b^2})^2 + y^2)^{1/2} \end{equation} But the equation for an ellipse tells us that $y^2 = b^2(1 - \frac{x^2}{a^2})$, and we can substitute this in: \begin{equation} D = ((x-\sqrt{a^2-b^2})^2 + b^2(1 -\frac{x^2}{a^2}))^{1/2} + ((x-\sqrt{a^2-b^2})^2 + b^2(1 -\frac{x^2}{a^2}))^{1/2} \end{equation} We can then square this to find: \begin{equation} D^2 = 2x^2 + 2(a^2 b^2) +2b^2(1 - \frac{x^2}{a^2}) - 2\sqrt{(x-\sqrt{a^2-b^2})^2 + b^2(1 -\frac{x^2}{a^2}))^2 4x^2(a^2-b^2)} \end{equation} Expanding out the terms under the square root we find: \begin{equation} D^2 = 2x^2 + 2a^2 2b^2 + 2b^2 - \frac{2b^2x^2}{a^2} 2x^2 + 2a^2 + \frac{2b^2x^2}{a^2} = 4a^2 \end{equation} Therefore the total distance is independent of the coordinates $x$ and $y$, and is $2a$, as we would expect, since it is obvious that the distance has to be this at the narrow endpoints of the ellipse.Please wait while we process your payment