Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews June 16, 2023 June 9, 2023
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Kepler's Second Law can be stated in several equivalent ways:
Keplers Second Law means that the closer a planet is to the sun, the faster it must be moving on its orbit. When the planet is far away from the sun, it only has to move a relatively small distance in order to sweep out a large area. However, when the planet is close to the sun it must move a lot further in order to sweep out an equal area. This can be seen most clearly in .
Kepler's Second Law is an example of the principle of conservation of angular momentum for planetary systems. We can make a geometrical argument to show how this works.
Consider two points $P$ and $Q$ on the orbit of a planet, separated by avery small distance. Suppose that it takes a small time $dt$ for the planet to move from $P$ to $Q$. Because the line segment $\vec{PQ}$ is small, we can make the approximation that it is a straight line. Then $\vec{PQ}$, being the infinitesimal distance $dx$ over which the planet moved in time $dt$, represents the average velocity of the planet over that small range. That is $\vec{PQ} = \vec{v}$. Now consider the area swept out in this time $dt$. It is given by the area of the triangle $SPQ$, which has height $PP'$ and base $r$. But it is also clear from that $PP' = |PQ|\sin\theta$. Thus the area swept out per time $dt$ is given by: \begin{equation} \frac{dA}{dt} = \frac{1}{2}\times r \times |PQ| \times \sin\theta = \frac{rv\sin\theta}{2} \end{equation} But Kepler's Second Law asserts that equal areas must be swept out in equal time intervals or, expressed differently, area is swept out at a constant rate ($k$). Mathematically: \begin{equation} \frac{dA}{dt} = k \end{equation} But we just this value: \begin{equation} \frac{dA}{dt} = k = \frac{rv\sin\theta}{2} \end{equation} Angular momentum is given by the expression: \begin{equation} \vec{L} = m(\vec{v} \times \vec{r}) = mvr\hat{n}\sin\theta \end{equation} where $m$ is the mass being considered. The magnitude of the angular momentum is clearly $mvr\sin\theta$ where we are now considering the magnitudes of $\vec{v}$ and $\vec{r}$. Kepler's Second Law has demonstrated that $ k = \frac{rv\sin\theta}{2}$, and thus: \begin{equation} 2km = mvr\sin\theta = |\vec{L}| \end{equation} Since the mass of any planet remains constant around the orbit, we have shown that the magnitude of the angular momentum is equal to a constant. Thus Kepler's Second Law demonstrates that angular momentum is conserved for an orbiting planet.
Please wait while we process your payment