Continuing to Payment will take you to apayment page

Purchasing
SparkNotes PLUS
for a group?

Get Annual Plans at a discount when you buy 2 or more!

Price

$24.99$18.74/subscription + tax

Subtotal $37.48 + tax

Save 25%
on 2-49 accounts

Save 30%
on 50-99 accounts

Want 100 or more?
Contact us
for a customized plan.

Continuing to Payment will take you to apayment page

Your Plan

Payment Details

Payment Details

Payment Summary

SparkNotes Plus

You'll be billed after your free trial ends.

7-Day Free Trial

Not Applicable

Renews June 23, 2024June 16, 2024

Discounts (applied to next billing)

DUE NOW

US $0.00

SNPLUSROCKS20 | 20%Discount

This is not a valid promo code.

Discount Code(one code per order)

SparkNotes PLUS
Annual Plan - Group Discount

Qty: 00

SubtotalUS $0,000.00

Discount (00% off)
-US $000.00

TaxUS $XX.XX

DUE NOWUS $1,049.58

SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.

Choose Your Plan

Your Free Trial Starts Now!

For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!

Thank You!

You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.

No URL

Copy

Members will be prompted to log in or create an account to redeem their group membership.

Thanks for creating a SparkNotes account! Continue to start your free trial.

We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.

There was an error creating your account. Please check your payment details and try again.

Please wait while we process your payment

Your PLUS subscription has expired

We’d love to have you back! Renew your subscription to regain access to all of our exclusive, ad-free study tools.

Renew your subscription to regain access to all of our exclusive, ad-free study tools.

The final concept we develop for rotational motion is that of angular
momentum. We will give the same treatment to angular momentum that we did to
linear momentum: first we develop the concept for a single particle, then
generalize for a system of particles.

Angular Momentum for a Single Particle

Consider a single particle of mass m travelling with a velocity v a radius r
from an axis, as shown below.

The angular momentum of the single particle, then, is defined as:

l = rmv sinθ

Notice that this equation is equivalent to l = rp sinθ, where p is the
linear momentum of the particle: a particle does not need to move in a circular
path to possess angular momentum. However, when calculating angular momentum,
only the component of the velocity moving tangentially to the axis of rotation
is considered (explaining the presence of sinθ in the equation).
Another important aspect of this equation is that the angular momentum
is measured relative to the origin chosen. This choice is arbitrary, and our
origin can be chosen to correspond to the most convenient calculation.

Because angular momentum is the cross
product of position and linear momentum,
the angular momentum formula is expressed in vector notation as:

l = r×p

This equation provides the direction of the angular momentum vector: it always
points perpendicular to the plane of motion of the particle.

Angular Momentum and Net Torque.

It is possible to derive a statement relating angular momentum and net torque.
Unfortunately, the derivation requires quite a bit of calculus, so we will
simply revert to the linear analogue. Recall that: F = . In a
similar way,

τ =

A net torque changes a particle's angular momentum in the same way that a net
force changes a particle's linear momentum.

In circumstances of rotational motion, however, we usually deal with rigid
bodies. In such cases the definition of the angular momentum of a single
particle is of little use. Thus we extend our definitions to systems of
particles.

Angular Momentum of Systems of Particles

Consider a rigid body rotating about an axis. Each particle in the body moves
in a circular path, implying that the angle between the velocity of the particle
and the radius of the particle is 90^{o}. If there are n particles, we
find the total angular momentum of the body by summing the individual angular
moments:

L = l_{1} + l_{2} + ^{ ... } + l_{n}

Now we express each l in terms of the particle's mass, radius and
velocity: