Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews April 4, 2023 March 28, 2023
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Problem :
What is the kinetic energy of a 2 kg ball that travels a distance of 50 meters in 5 seconds?
The velocity of the ball is easily calculable: v = = 10 m/s. With
values for the mass and velocity of the ball, we can calculate kinetic energy:
Problem :
In a sense we all have kinetic energy, even when we are standing still. The earth, with a radius of 6.37×106 meters, rotates about its axis once a day. Ignoring the earth's rotation about the sun, what is the kinetic energy of a 50 kg man standing on the surface of the earth?
To find the velocity of the man we must find how far he travels over a given
time period. In one day, or 86400 seconds, the man travels the circumference of
the earth, or 2Πr meters. Thus the velocity of the man is v = =
= 463 m/s. Again, since we know the
velocity and mass of the man we can calculate kinetic energy.
K =
mv2 =
(50 kg)(463 m/s)2 = 5.36×106
Joules.
Problem :
A ball is dropped from a height of 10 m. What is its velocity when it hits the ground?
The ball is acted upon by a constant gravitational force, mg. The work done during its total trip, then, is simply mgh. By the Work-Energy theorem, this causes a change in kinetic energy. Since the ball initially has no velocity, we can find the final velocity by the equation:Solving for v ,
Problem :
A ball is thrown vertically with a velocity of 25 m/s. How high does it go? What is its velocity when it reaches a height of 25 m?
The ball reaches its maximum height when its velocity is reduced to zero. This change in velocity is caused by the work done by gravitational force. We know the change in velocity, and hence the change in kinetic energy of the ball, and can calculate its maximum height from this:
But vf = 0 , and the masses cancel, so
When the ball is at a height of 25 meters, the gravitational force has done an amount of work on the ball equal to W = - mgh = - 25 mg. This work causes a change in velocity of the particle. We now use the Work-Energy Theorem, and solve for the final velocity:
Again, the masses cancel:
Thus
Problem :
A ball with enough speed can complete a vertical loop. With what speed must the ball enter the loop to complete a 2 m loop? (Keep in mind that the velocity of the ball is not constant throughout the loop).
At the top of the loop, the ball must have enough velocity such that the centripetal force provided by its weight keeps the ball in circular motion. In other words:
Solving for v ,
During the entire vertical loop, the ball is acted upon by two forces: the normal force and the gravitational force. The normal force, by definition, always points perpendicular to the circumference of the loop, and thus the motion of the ball. Consequently, it cannot perform work on the ball. The gravitational force, on the other hand, does perform work on the ball, according the height it reaches. Since the radius of the circle is 2 m, the ball reaches a height of 4 m, and experiences work from the gravitational force of - mgh = - 2mg. Remember the sign is negative because the force acts in a direction opposite the motion of the ball. This work causes a change in velocity from the bottom of the loop to the top of the loop, which can be calculated by the work-energy theorem:
Thus
Canceling the mass and solving for vo ,
Please wait while we process your payment