Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
Get instant, ad-free access to our grade-boosting study tools with a 7-day free trial!
Learn more
Create Account
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Log into your PLUS account
Create Account
Select Plan
Payment Info
Start 7-Day Free Trial!
Select Your Plan
Monthly
$5.99
/month + taxAnnual
$29.99
/year + taxAnnual
2-49 accounts
$22.49/year + tax
50-99 accounts
$20.99/year + tax
Select Quantity
Price per seat
$29.99 $--.--
Subtotal
$-.--
Want 100 or more? Request a customized plan
Monthly
$5.99
/month + taxYou could save over 50%
by choosing an Annual Plan!
Annual
$29.99
/year + taxSAVE OVER 50%
compared to the monthly price!
| Focused-studying | ||
| PLUS Study Tools | ||
| AP® Test Prep PLUS | ||
| My PLUS Activity | ||
Annual
$22.49/month + tax
Save 25%
on 2-49 accounts
Annual
$20.99/month + tax
Save 30%
on 50-99 accounts
| Focused-studying | ||
| PLUS Study Tools | ||
| AP® Test Prep PLUS | ||
| My PLUS Activity | ||
Testimonials from SparkNotes Customers
No Fear provides access to Shakespeare for students who normally couldn’t (or wouldn’t) read his plays. It’s also a very useful tool when trying to explain Shakespeare’s wordplay!
Erika M.
I tutor high school students in a variety of subjects. Having access to the literature translations helps me to stay informed about the various assignments. Your summaries and translations are invaluable.
Kathy B.
Teaching Shakespeare to today's generation can be challenging. No Fear helps a ton with understanding the crux of the text.
Kay H.
Testimonials from SparkNotes Customers
No Fear provides access to Shakespeare for students who normally couldn’t (or wouldn’t) read his plays. It’s also a very useful tool when trying to explain Shakespeare’s wordplay!
Erika M.
I tutor high school students in a variety of subjects. Having access to the literature translations helps me to stay informed about the various assignments. Your summaries and translations are invaluable.
Kathy B.
Teaching Shakespeare to today's generation can be challenging. No Fear helps a ton with understanding the crux of the text.
Kay H.
Create Account
Select Plan
Payment Info
Start 7-Day Free Trial!
Payment Information
You will only be charged after the completion of the 7-day free trial.
If you cancel your account before the free trial is over, you will not be charged.
You will only be charged after the completion of the 7-day free trial. If you cancel your account before the free trial is over, you will not be charged.
Order Summary
Annual
7-day Free Trial
SparkNotes PLUS
$29.99 / year
Annual
Quantity
51
PLUS Group Discount
$29.99 $29.99 / seat
Tax
$0.00
SPARK25
-$1.25
25% Off
Total billed on Nov 7, 2024 after 7-day free trail
$29.99
Total billed
$0.00
Due Today
$0.00
Promo code
This is not a valid promo code
Card Details
By placing your order you agree to our terms of service and privacy policy.
By saving your payment information you allow SparkNotes to charge you for future payments in accordance with their terms.
Powered by stripe
Legal
Google pay.......
Thank You!
Your group members can use the joining link below to redeem their membership. They will be prompted to log into an existing account or to create a new account. All members under 16 will be required to obtain a parent's consent sent via link in an email.Your Child’s Free Trial Starts Now!
Thank you for completing the sign-up process. Your child’s SparkNotes PLUS login credentials are [email] and the associated password. If you have any questions, please visit our help center.Your Free Trial Starts Now!
Please wait while we process your payment
Sorry, you must enter a valid email address
By entering an email, you agree to our privacy policy.
Please wait while we process your payment
Sorry, you must enter a valid email address
By entering an email, you agree to our privacy policy.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Month
Day
Year
Please read our terms and privacy policy
Please wait while we process your payment
Problems on Light as a wave
Problem : Find an expression for the angular frequency of a wave in terms of the wavelength and phase velocity.
The most general form of a harmonic wave is given by ψ = A cos[k(x - vt)], where v is the phase velocity and k is the wave number. Expanding this we have ψ = A cos(kx - kvt). We know that the argument of the cosine must be dimensionless, so the expression kvt must be dimensionless, thus kv must be an inverse time, or the angular frequency of the wave (we know it is an angular frequency and not a regular frequency since we want the argument of the cosine to be in radians, which are dimensionless). Thus σ = kv. But the wavenumber is just k = 2Π/λ so σ =
.
Problem : If the numbers in this problem are given in SI units, calculate the velocity of a wave given by the equation: ψ(y, t) = (9.3×104)sin[Π(9.7×106y + 1.2×1015t)].
The speed is given by v =
=
= 1.24×108 meters per second. The direction is the along in the y-axis in the negative direction (since
a minus sign causes the wave to advance to the right, and we have a plus sign here).
Problem : Write the equation for a wave with an amplitude 2.5×103 V/m, a period 4.4×10-15 seconds, and speed 3.0×108 m/s, which is propagating in the negative z-direction with value 2.5×103 V/m at t = 0, z = 0.
We want a wave of the form
. The plus sign arises from the direction of
travel: when t = 0, z = 0 we have a peak at the origin, but as time increases (z = 0, t = Π/2, for
example) the peak advances to the left, and hence the wave is propagating in the negative direction as
required. We can calculate σ, the angular frequency, from the period T = 1/ν = 2Π/σ. Thus σ = 2Π/T =
= 1.43×1015 s-1.
We can compute k since we know that v = σk hence k =
=
= 4.76×106 m-1. The amplitude is given and the
cosine gives us the right phase (we could choose a sine an subtract a phase of Π/2). Thus:
![]() |
Problem : Consider the wave ψ(x, t) = A cos(k(x + vt) + Π). Find an expression (in terms of A) for the magnitude of the wave when x = 0, t = T/2, and x = 0, t = 3T/4 .
When x = 0 we have ψ = A cos(kvt + Π). At t = T/2 we then have ψ = A cos(kvT/2 + Π). Now k = 2Π/λ, T = 1/ν and v = λν so kvT = 2Π. Thus we have ψ = A cos(2Π/2 + Π) = A cos(2Π) = A. In the latter case we have ψ = A cos(3×2Π/4 + Π) = A cos(5Π/2) = 0.Problem : Demonstrate explicitly that a harmonic function ψ(x, t) = A cos(kx - σt) satisfies the wave equation. What condition needs to be fulfilled?
Clearly the second (partial) derivatives with respect to y and z are zero. The second derivative with respect to x is: = - Ak2cos(kx - σt) |
= - Aσ2cos(kx - σt) |
= ![]() ![]() |
. Canceling and rearranging this gives the required condition as: v =
,
which is just the result we stated for the phase velocity.
Please wait while we process your payment