Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews December 17, 2023 December 10, 2023
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Problem :
Calculate the net torque exerted by F1 = 30 N and F2 = 50 N in the figure
below. You may assume that both forces act on a single rigid body.
We begin be calculating the magnitude of each torque individually. Recall that τ = Fr sinθ. Thus τ1 = (30)(1)sin 120 = 26.0 N-m and τ2 = (50)(1)sin 30 = 25 N-m. As we can see from the figure, τ1 acts counterclockwise while τ2 acts clockwise. Thus the two torques act in opposite directions, and the net torque is thus 1 N-m in the counterclockwise direction.
Problem :
Two cylinders of the same mass and shape, one hollow and one solid, are set on a incline and allowed to roll down. Which cylinder will reach the bottom of the incline first? Why?
Since both cylinders have the same shape, they will experience the same forces, and thus the same net torque. Recall that τ = Iα. Thus the cylinder with the smaller moment of inertia will accelerate more quickly down the incline. Think of each cylinder as a collection of particles. The average radius of a particle in the solid cylinder is smaller than the hollow one, as most of the mass of the hollow one is concentrated at a larger radius. Since moment of inertia varies with r2, it is clear that the solid cylinder will have a smaller moment of inertia, and thus a larger angular acceleration. The solid cylinder will reach the bottom of the incline first.
Problem :
A simple pendulum of mass m on a string of radius r is displaced from vertical
by an angle θ, as shown below. What is the torque provided by gravity at
that point?
We begin by resolving the gravitational force into tangential and radial
components, as shown below:
Problem :
See the last problem. What is the angular acceleration of the pendulum at that point?
We already know the torque acting on the pendulum. Recall that τ = Iα. Thus, to find the angular acceleration we need to compute the moment of inertia of the pendulum. Fortunately, it is simple in this case. We can treat the mass on the pendulum as a single particle of mass m and radius r. Thus I = mr2. With this information we can solve for α:
Problem :
A revolving door is common in office buildings. What is the magnitude of the
torque exerted on a revolving door of mass 100 kg if two people push on opposite
sides of the door with a force of 50 N at a distance of 1 m from the axis of the
door, as shown below? Also, the moment of inertia of a revolving door is given
by I = . Find the resultant angular acceleration assuming no
resistance.
Although it looks like the forces are directed in opposite directions, and thus
cancel out, we must remember that we are working with angular motion here. In
fact, both forces point in the counterclockwise direction, and can be considered
to have the same magnitude and direction. In addition, they are both
perpendicular to the radial direction of the door, so the magnitude of the
torque by each one is given by: τ = Fr = (50 N)(1 m) = 50 N-m. As we stated,
the two forces act in the same direction, so the net torque is simply: τ = 100 N-m.
Next we have to calculate angular acceleration. We already know the net torque
and thus must find the moment of inertia. We are given the formula
I = . We are given the mass, and from the figure we see that the
radius is simply 1.5 m. Thus:
Please wait while we process your payment